В желудке происходит расщепление молочного сахара

В желудке происходит расщепление молочного сахара thumbnail

Переваривание углеводов. Последовательность переваривания углеводов в ЖКТ

а) Углеводные продукты в пище. В пищевом рационе человека встречаются только три основных источника углеводов:

(1) сахароза, которая является дисахаридом и широко известна как тростниковый сахар;

(2) лактоза, являющаяся дисахаридом молока;

(3) крахмал — полисахарид, представленный практически во всей растительной пище, в особенности в картофеле и различных видах зерновых.

Другими углеводами, усваиваемыми в небольшом количестве, являются амилоза, гликоген, алкоголь, молочная кислота, пиро-виноградная кислота, пектины, декстрины и в наименьшем количестве — производные углеводов в мясе.

Пища также содержит большое количество целлюлозы, которая является углеводом. Однако в пищеварительном тракте человека не существует фермента, способного расщепить целлюлозу, поэтому целлюлоза не рассматривается как пищевой продукт, пригодный для человека.

б) Переваривание углеводов в ротовой полости и желудке. Когда пища пережевывается, она смешивается со слюной, которая содержит пищеварительный фермент птиалин (α-амилазу), секретирующийся в основном околоушными железами. Этот фермент гидролизует крахмал на дисахарид мальтозу и другие небольшие глюкозные полимеры, содержащие от 3 до 9 молекул глюкозы, как показано на рисунке ниже.

Переваривание углеводов. Последовательность переваривания углеводов в ЖКТ
Переваривание углеводов

Однако в ротовой полости пища находится короткое время, и, вероятно, до акта глотания гидролизуется не более 5% крахмала.

Тем не менее, переваривание крахмала иногда продолжается в теле и дне желудка еще в течение 1 ч до тех пор, пока пища не начнет перемешиваться с желудочным секретом. Затем активность амилазы слюны блокируется соляной кислотой желудочного секрета, т.к. амилаза как фермент в принципе не активна при снижении рН среды ниже 4,0. Несмотря на это, в среднем до 30-40% крахмала гидролизуется в мальтозу прежде, чем пища и сопутствующая ей слюна полностью перемешаются с желудочными секретами.

в) Переваривание углеводов в тонком кишечнике. Переваривание панкреатической амилазой. Секрет поджелудочной железы, как и слюна, содержит большое количество амилазы, т.е. он почти полностью схож в своих функциях с α-амилазой слюны, но в несколько раз эффективнее. Таким образом, не более чем через 15-30 мин после того, как химус из желудка попадет в двенадцатиперстную кишку и смешается с соком поджелудочной железы, фактически все углеводы оказываются переваренными.

В результате прежде чем углеводы выйдут за пределы двенадцатиперстной кишки или верхнего отдела тощей кишки, они почти полностью превращаются в мальтозу и/или в другие очень небольшие полимеры глюкозы.

г) Гидролиз дисахаридов и небольших полимеров глюкозы в моносахариды ферментами кишечного эпителия. Энтероциты, выстилающие ворсинки тонкого кишечника, содержат четыре фермента (лактазу, сахаразу, мальтазу и α-декстриназу), способных расщеплять дисахариды лактозу, сахарозу и мальтозу, а также другие небольшие глюкозные полимеры на их конечные моносахариды. Эти ферменты локализованы в микроворсинках щеточной каемки, покрывающей энтероциты, поэтому дисахариды перевариваются сразу, как только соприкасаются с этими энтероцитами.

Лактоза расщепляется на молекулу галактозы и молекулу глюкозы. Сахароза расщепляется на молекулу фруктозы и молекулу глюкозы. Мальтоза и другие небольшие глюкозные полимеры расщепляются на многочисленные молекулы глюкозы. Таким образом, конечными продуктами переваривания углеводов являются моносахариды. Все они растворяются в воде и мгновенно всасываются в портальный кровоток.

В обычной пище, в которой из всех углеводов больше всего крахмала, более 80% конечного продукта переваривания углеводов составляет глюкоза, а галактоза и фруктоза — редко более 10%.

Основные стадии переваривания углеводов обобщены на рисунке выше.

– Также рекомендуем “Переваривание белков. Этапы и последовательность переваривания белков”

Оглавление темы “Пищеварительные соки. Переваривание углеводов, белков, жиров”:

1. Регуляция секреции поджелудочной железы. Этапы панкреатической секреции

2. Физиология секреции желчи. Физиологическая анатомия секреции желчи

3. Состав желчи. Функция желчи в переваривании жиров

4. Холестерол и желчные камни. Секреция в двенадцатиперстной кишке

5. Секреция кишечного пищеварительного сока. Состав кишечного пищеварительного сока

6. Секреция в толстом кишечнике. Гидролиз питательных веществ

7. Переваривание углеводов. Последовательность переваривания углеводов в ЖКТ

8. Переваривание белков. Этапы и последовательность переваривания белков

9. Переваривание жиров. Этапы переваривания жиров в кишечнике

10. Переваривание триглицеридов. Формирование жировых мицелл

Источник

Пищеварение – это сложный и многоступенчатый процесс, который длится достаточно долго. Он нужен для обеспечения организма энергией и необходимыми для жизнедеятельности питательными веществами.

Какие органы участвуют в процессе пищеварения?

В процессе пищеварения участвует много органов, биологических жидкостей и химических соединений:

  1. Полость рта. Процесс пищеварения начинается с того момента, когда еда попадает человеку в рот, а отнюдь не в желудке. От качества работы ротовой полости и желез, расположенных в ней, зависит дальнейших процесс переваривания пищи. В ротовой полости еда измельчается при помощи зубов, и обрабатывается слюной из слюнных желез. Язык выступает анализатором пригодности пищи для дальнейшего употребления.
  2. Глотка. Этот орган доставляет пережеванные продукты в органы пищеварительного тракта, деля пищу на более мелкие порции при глотании.
  3. Пищевод. Данный орган соединяет желудочно-кишечный тракт и глотку. Он способен сужаться и расширяться по мере попадания в него пищи.
  4. Желудок. Представляет собой естественный природный резервуар, который нужен для накопления и переваривания пищи. При необходимости он тоже расширяется или сужается.

Что происходит с едой в желудке?

Когда комок пищи попал в желудок, тот начинает сокращаться. За счет этого еда еще сильнее измельчается и смешивается с ферментами и желудочным соком. Эти вещества никак не вредят самому желудку, так как он покрыт плотной слизистой оболочкой.

В процессе всех этих манипуляций образуется химус – более жидкая и измельченная масса, нежели была изначально. В желудке химус находится еще некоторое время, чтобы лучше пропитаться желудочным соком. Когда это произойдет, то под воздействием очередных сокращений, пища продвигается в тонкую кишку.

Далее на нее воздействует печень, желчный пузырь и поджелудочная железа. За счет их ферментов пища разделяется на белки, углеводы и жиры. Печень помогает всасыванию жирных кислот, запасает витамины и полезные вещества. Также она нейтрализует вредные вещества, которые могли попасть в организм вместе с пищей.

Где усваиваются питательные вещества?

Усвоение питательных веществ происходит в тонком кишечнике. Для этого задействуются крошечные ворсинки, через которые полезные микроэлементы поступают в кровь. За счет постоянного кровотока вещества разносятся по всему организму.

Ближе к концу тонкого кишечника, пища представляет из себя смесь воды и электролитов. Также в ней есть вещества, которые не смогли перевариться. Это переходит в область толстого кишечника.

Как непереваренные остатки выводятся из организма?

В толстом кишечнике массы окончательно перевариваются, из них высвобождаются последние питательные вещества. Затем начинается преобразование остатков в каловые массы.

Когда каловые массы поступают к концу прямой кишки, происходит опорожнение кишечника за счет сокращения мышц анального сфинктера.

Как улучшить процесс переваривания пищи?

Улучшить процесс переваривания пищи помогает следующее:

  1. Занятия спортом.
  2. Отказ от вредных привычек.
  3. Правильное и рациональное питание.
  4. Употребление в пищу растительных продуктов с высоким содержанием клетчатки.
  5. Прием ферментов в виде препаратов.

Заключение

Процесс пищеварения происходит в несколько этапов. Для его осуществления требуется много времени и достаточное количество энергии. Происходит он не только в желудке, а берет свое начало в ротовой полости и заканчивает в прямой кишке.

Отказ от ответсвенности

Обращаем ваше внимание, что вся информация, размещённая на сайте
Prowellness предоставлена исключительно в ознакомительных целях и не является персональной программой, прямой рекомендацией к действию или врачебными советами. Не используйте данные материалы для диагностики, лечения или проведения любых медицинских манипуляций. Перед применением любой методики или употреблением любого продукта проконсультируйтесь с врачом. Данный сайт не является специализированным медицинским порталом и не заменяет профессиональной консультации специалиста. Владелец Сайта не несет никакой ответственности ни перед какой стороной, понесший косвенный или прямой ущерб в результате неправильного использования материалов, размещенных на данном ресурсе.

Источник

Переваривание белков. Этапы и последовательность переваривания белков

а) Пищевые белки. Пищевые белки химически представляют собой длинные цепи аминокислот, соединенных друг с другом пептидными связями. Далее представлена типичная связь:

Переваривание белков. Этапы и последовательность переваривания белков

Характеристика каждого белка определяется типом аминокислот в молекуле белка и последовательностью расположения этих аминокислот. Физические и химические характеристики различных белков, важных для человека, изложены в отдельной статье на сайте (просим вас пользоваться формой поиска выше).

б) Переваривание белков в желудке. Пепсин — важный фермент желудка, расщепляющий белки. Он наиболее активен при рН 2,0-3,0 и не активен при рН выше 5,0. Вследствие этого для проявления расщепляющего действия белка ферментом желудочный сок должен быть кислым. Как объяснено в отдельной статье на сайте (просим вас пользоваться формой поиска выше), железы желудка секретируют большое количество соляной кислоты. Эта кислота секретируется париетальными (кислотопродуцирующими) клетками желез при рН, равным приблизительно 0,8. К моменту, когда кислота смешивается с желудочным содержимым и секретом из некислотопродуцирующих железистых клеток желудка, рН уже составляет в среднем 2,0-3,0, что чрезвычайно благоприятно для активности пепсина.

Одной из важных переваривающих особенностей пепсина является его способность переваривать белок коллаген — альбуминоподобный тип белка, который лишь незначительно расщепляется под действием других пищеварительных ферментов. Коллаген — главная составляющая часть межклеточной соединительной ткани мяса; поэтому для расщепления белков мяса ферментами пищеварительного тракта прежде всего необходимо переварить коллагеновые нити. В связи с этим у индивида, у которого отмечается недостаток пепсина в желудочном соке, съеденное мясо хуже подвергается обработке другими пищеварительными ферментами и, следовательно, может хуже перевариваться.

Переваривание белков. Этапы и последовательность переваривания белков
Переваривание белков

Как показано на рисунке выше, пепсин только начинает процесс переваривания белка, обычно обеспечивая только 10-20% полного переваривания белков и превращение их в альбумозы, пептоны и мелкие полипептиды. Это расщепление белков происходит в результате гидролиза пептидной связи между аминокислотами.

в) Переваривание белков секретами поджелудочной железы. Переваривание белка преимущественно происходит в верхних отделах тонкого кишечника, в двенадцатиперстной кишке и тощей кишке под воздействием протеолитических ферментов, секретируемых поджелудочной железой. Частично расщепленные продукты белковой пищи, поступая в тонкий кишечник из желудка, подвергаются воздействию главных протеолитических панкреатических ферментов: трипсина, хемотрипсина, карбоксиполипептидазы и проэластазы (для облегчения понимания просим вас изучить рисунок выше).

Трипсин и хемотрипсин расщепляют молекулы белка на небольшие полипептиды; карбоксиполипептидаза отщепляет отдельные аминокислоты от карбоксильного конца полипептидов. Проэластаза, в свою очередь, превращается в эластазу, которая затем переваривает эластические волокна, частично содержащиеся в мясных продуктах. Под действием панкреатического сока небольшой процент белков переваривается до аминокислот. Большинство белков расщепляется до дипептидов и трипептидов.

г) Переваривание белков пептидазами энтероцитов, встроенных в ворсинки тонкого кишечника. Заключительный этап переваривания белков в просвете кишечника обеспечивается энтероцитами тонкого кишечника, которые покрыты ворсинками, преимущественно в двенадцатиперстной кишке и тощей кишке. Эти клетки имеют щеточную каемку, которая состоит из сотен микроворсинок, выступающих над поверхностью клетки. В мембране каждой из этих микроворсинок содержатся многочисленные пептидазы, которые выступают над мембраной, где они взаимодействуют с кишечной жидкостью.

Наиболее важны два типа пептидаз: аминополипептидаза и некоторые дипептидазы. Они доводят расщепление оставшихся крупных полипептидов до дипептидов, трипептидов и меньшего числа аминокислот. И аминокислоты, и дйпептиды с трипептидами свободно транспортируются сквозь мембрану микроворсинок во внутреннюю часть энтероцита.

Наконец, внутри цитозоля энтероцитов находятся другие многочисленные пептидазы, которые специфичны для оставшихся связей между аминокислотами. В течение нескольких минут практически все оставшиеся дипептиды и трипептиды перевариваются до конечной стадии в форме отдельных аминокислот; далее они выходят через другую сторону энтероцита, а отсюда — в кровь.

Более 99% конечных продуктов переваривания белков, которые всасываются, являются одиночными аминокислотами. Очень редко происходит всасывание пептидов и чрезвычайно редко всасывается целая молекула белка. Даже крайне малое число всосавшихся молекул цельного белка может иногда вызывать серьезные аллергические или иммунологические нарушения.

– Также рекомендуем “Переваривание жиров. Этапы переваривания жиров в кишечнике”

Оглавление темы “Пищеварительные соки. Переваривание углеводов, белков, жиров”:

1. Регуляция секреции поджелудочной железы. Этапы панкреатической секреции

2. Физиология секреции желчи. Физиологическая анатомия секреции желчи

3. Состав желчи. Функция желчи в переваривании жиров

4. Холестерол и желчные камни. Секреция в двенадцатиперстной кишке

5. Секреция кишечного пищеварительного сока. Состав кишечного пищеварительного сока

6. Секреция в толстом кишечнике. Гидролиз питательных веществ

7. Переваривание углеводов. Последовательность переваривания углеводов в ЖКТ

8. Переваривание белков. Этапы и последовательность переваривания белков

9. Переваривание жиров. Этапы переваривания жиров в кишечнике

10. Переваривание триглицеридов. Формирование жировых мицелл

Источник

Метаболизм углеводов в организме человека – сложный, многоступенчатый процесс. Он включает в себя переваривание, усвоение и синтез углеводов. Пища обрабатывается в ЖКТ и поступает в кровь для последующего использования глюкозы организмом.

Биологическая роль углеводного обмена для организма человека

При патологии углеводного обмена возникают отклонения в работе центральной нервной системы, сердца, мышц и ряде других органов. При недостатке углеводов может возникать слабость, апатия, головокружение, бессознательное состояние с расстройством мышления, потеря сознания и мышечные судороги.

Углеводы являются главным источником  для функционирования мозга, а значит, — мыслительной деятельности человека. Мозг потребляет не менее 25% от общего количества калорий, поступающих из углеводов в организм человека.

Метаболизм углеводов в организме ребенка в 3-4 раза интенсивнее, чем у взрослого. В детском и подростковом возрасте повышается потребность как в углеводах, так и в других нутриентах пищи – белках и жирах.

Еще одной особенностью детского углеводного обмена являются резкие колебания уровня глюкозы. Чем младше ребенок, тем меньше в его крови глюкозы при замере натощак. Помимо того, у детей неразвиты гликогеновые депо, а усвояемость углеводов составляет 98-99%.

Взрослым людям требуется почти в половину меньше углеводов, чем ребенку.

Краткие сведения об углеводах (виды, значение и функции углеводов. Для чего они нужны)

По структуре углеводы делятся на 3 группы.

  • Моносахариды это простейшие органические соединения. В их число входят: глюкоза, фруктоза, дезоксирибоза и рибоза, а также альдозы и кетозы.
  • Олигосахариды включают в себя от 2 до 10 моносахаридных остатков. Самые известные — дисахариды – подгруппа олигосахаридов, состоящая из двух моносахаридов. К ним относятся лактоза, сахароза и мальтоза. Это плотные сладкие кристаллические вещества.
  • Полисахариды состоят из наибольшего числа моносахаридов. В отличие от олигосахаридов и моносахаридов, многие полимеры не растворяются в воде и выполняют резервную, структурную функции в организме. Примеры полисахаридов: крахмал, гликоген, инулин, хитин, пектины, целлюлоза и арабиноксиланы.

Самые часто встречаемые в пище углеводы – это глюкоза, фруктоза, лактоза, крахмал и целлюлоза (клетчатка):

Название углеводаИсточник и функции
ГлюкозаСамая малая и распространенная молекула сахаридов, по структуре моносахарид. Она мгновенно попадает в кровь и провоцирует всплеск инсулина, что опасно для людей, больных диабетом.
ФруктозаУглевод, получаемый из фруктов и овощей. Он имеет свою специфику, поскольку не вызывает резкого скачка глюкозы в крови и способен откладываться в виде печеночного гликогена и жировой ткани внутренних органов.
ЛактозаСодержится в молоке млекопитающих и в производимых из него продуктах. Молочный сахар – 1 из первых компонентов, попадающих в организм ребенка. Он отвечает за рост и развитие малыша. У людей, страдающих непереносимостью лактозы, отсутствует фермент, способствующий перевариванию и усвоению молока.
КрахмалМожно найти в картофеле, кукурузе, рисе и муке. Этот углевод обладает способностью набухать в горячей воде, но не растворяется в холодной. Безвкусен, имеет консистенцию белого порошка. Крахмал выполняет резервную и структурную функции в организме человека.
ЦеллюлозаКомпонент клеточных мембран растений. Она не имеет ни вкуса, ни запаха, но положительно сказывается на функционировании органов пищеварения. Ее используют в фармацевтике в качестве наполнителя таблеток. Приверженцы здорового образа жизни стараются увеличить содержание клетчатки в своем рационе, употребляя больше зеленых овощей, цельных круп и несладких фруктов.

У целлюлозы есть «двойник» – туницин, найденный в 1845 гг. Карлом Эрнестом Шмидтом у простейших оболочников. Новые исследования показали, что он также находится в телах слизней, моллюсков и членистоногих животных.

В первую очередь, углеводы выполняют энергетическую функцию. Человек, как и любое другое существо, нуждается в энергии для полноценной жизнедеятельности. Энергия расходуется постоянно — во время работы, умственной активности и даже во сне.

Сахариды входят в структуру клеточных мембран и сложных молекул рибозы и дезоксирибозы, которые участвуют в построении ДНК.

Биосинтез и обмен углеводов

В отличие от растений, животные не могут синтезировать углеводы самостоятельно. Они вынуждены получать сахариды с пищей. Растения, в свою очередь, образуют углеводы путем фотосинтеза с помощью хлоропластов из углерода, воды и солнечной энергии.

Переваривание углеводов в ЖКТ

Травоядные животные получают крахмал, сахарозу и клетчатку из растений и запасают гликоген, который потребляют хищники.

Этапы пищеварения. Всасывание и расщепление углеводов

Протяженность желудочно-кишечного тракта у человека составляет примерно 5-6 метров. Каждый этап пищеварения в организме специфичен и выполняет жизненно важные функции. Его строение на всей протяженности длине однотипно, имеет 3 наружный, средний и внутренний слои.

В процессе пищеварения участвуют особые белковые молекулы – ферменты, выделяемые внутренним слоем ЖКТ. Каждый фермент расщепляет определенный компонент пищи – белки, жиры и углеводы.

Особенности процесса пищеварения в ротовой полости

От тщательного пережевывания пищи зависит ее усвояемость. В ротовой полости еда механически и химически обрабатывается. За механическое измельчение отвечают зубы. За химическую обработку – слюна. Помимо того, в ротовой полости проходит вкусовой анализ и обеззараживание пищи.

В слюне содержатся ферменты, расщепляющие крахмал и гликоген до олигосахаридов. А-амилаза и мальтаза (ферменты) действуют и при попадании пищевого комка в желудок. Причем, состав слюны зависит от вида питания.

От горьких, кислых или несъедобных веществ вырабатывается наибольшее количество слюны. Если пища твердая и сухая, то слюна более вязкая. После глотания пищевой комок попадает в пищевод и желудок, где продолжается его обработка и расщепление компонентов.

Процессы пищеварения в желудке. Пищеварительные ферменты. Перистальтика

Желудок является отделом ЖКТ, где пища перемешивается с желудочным соком, соляной кислотой и ферментами, механически обрабатывается рефлекторными сокращениями стенок. Здесь преобладает кислотная среда во время трапезы, после чего она сменяется на слабощелочную.

Обычно пища пребывает в желудке 6-10 часов, в зависимости от состава. Общая длительность переваривания углеводов в ЖКТ составляет от 20 до 40 мин., белковой пищи – до 2 часов, чистых жиров – до 3-4 ч. Стоит учитывать, что это время переваривания чистых нутриентов.

Смешанная пища проходит этот путь дольше. Жидкость переходит в тонкую кишку сразу после поступления в желудок.

Соляная кислота, отвечающая за кислотную среду в желудке, вызывает денатурацию белков и активирует ферменты. Помимо того, она выполняет защитную, регуляторную в отношении моторики желудка и 12-перстной кишки и стимулирующую секрецию функции.

Таким образом, в желудке протекают процессы механической, химической обработки и незначительное всасывание углеводов.

В течение 2-3 мин. после приема пищи наступает релаксация желудка – стенки расслабляются, что помогает депонировать пищевой комок и стимулировать секрецию желудочного сока. Перистальтические сокращения сокращаются три раза в минуту.

Ферменты желудка – пепсин, химозин, липаза, содержащиеся в желудочном соке. Пепсин и химозин специализируются на расщеплении белковых структур. Липаза – слабый фермент, действующий на жиры.

Интересный факт: активность ферментов зависит от типа питания. Например, у народов далекого Севера, активность липазы намного выше, чем у европейских рас.

Их рацион состоит из мяса и жира, поэтому в ходе эволюции организм приспособился получать необходимое количество энергии.

Как происходит пищеварение в тонком кишечнике

Химус движется по тонкой кишке и обрабатывается кишечным соком. Здесь соединения олигосахаридов, белков и жиров распадаются до конечных продуктов. Ферменты олиго- и дисахаридаза, отвечающие за обработку углеводов, весьма немногочисленны, но очень эффективны.

Пища попадает в тонкий кишечник в виде значительно переваренного продукта. Его обрабатывают более 20 ферментов. Моторика тонкой кишки обеспечивает продвижение пищевого комка по кишечнику.

Наибольшее значение имеет процесс всасывания в тонком кишечнике. После расщепления поступившие с пищей вещества с помощью специфичных клеток-ворсинок всасываются в стенки кишечника, направляясь в кровь и лимфу.

Функции печени, метаболизм углеводов

Печень выполняет как пищеварительные, так и непищеварительные функции. Во всех пищеварительных функциях печени участвует выделяемый ею секрет – желчь.

Печень поддерживает уровень глюкозы в пределах нормы. При повышении уровня сахара лишняя глюкоза конвертируется в гликоген. Если концентрация сахара снижается до пороговых значений, печень запускает реакции, направленные на распад гликогена и выброса глюкозы в кровь.

Важность желчного пузыря

Желчный пузырь является резервуаром для хранения желчи вне периода пищеварения. Здесь вещество концентрируется, густеет и приобретает коричневый цвет. Место для скопления желчи необходимо: она продуцируется непрерывно.

Когда пищевой комок достигает кишечника, желчный пузырь выбрасывает содержимое в кишку для последующего переваривания.

Особенности толстого кишечника

Толстый кишечник практически не участвует в обработке пищи. Однако, здесь тоже имеются ферменты и кишечный сок, облегчающий продвижение химуса.

Наибольшим значением обладает микрофлора кишечника. Бактерии делятся на группы, очень многочисленны и необходимы для нормального функционирования организма.

Главная микрофлора толстого кишечника – бифидобактерии, сопутствующая – лактобактерии и энтерококки, остаточная – дрожжи, аэробные бациллы и другие.

Бактерии вырабатывают ферменты, которые расщепляют клетчатку и остаточные после переваривания в тонкой кишке полимеры. Более того, нормальная микрофлора атакует патогенную, тем самым предотвращая многие инфекции. Синтез витаминов K и B1, B6 и B12 также заслуга микроорганизмов.

Депо гликогена

После переваривания углеводов в ЖКТ часть энергии запасается в виде гликогена. В печени взрослого человека количество гликогена достигает 100-150 г. По вместительности этого вещества клетки печени на первом месте. Всего в организме может храниться до 450 г гликогена.

Вторая «кладезь» гликогена – мышцы. Здесь его откладывается 200-300 г. Если быть точнее, энергия запасается не в мышечные волокна, а в питательной жидкости, которая их окружает.

Запасы расходуются на физическую активность. При интенсивной мышечной деятельности гликоген распадается и используется самими мышцами.
Анаболизм и катаболизм гликогена

Единство этих процессов обеспечивает поддержание уровня глюкозы в допустимых значениях. Количество печеночного гликогена зависит от рациона. Во время длительного голодания преобладает катаболизм, и концентрация гликогена снижается до нуля.

Гликогеногенез – синтез гликогена, требующий затрат энергии. Его начало приходится на 1-2 ч. после приема углеводной пищи. На самом деле, этот процесс протекает во всех тканях животных, но несущественно.

Регуляция метаболизма гликогена

Регуляция этих процессов осуществляется переключением. Причем регуляторами выступают гормоны инсулин, адреналин и глюкагон. Определенные концентрации гормонов вызывают включение или выключение соответствующего процесса.

Синтез инсулина регулируется уровнем сахара в крови. Чем выше уровень глюкозы – тем больше вырабатывается инсулина. Он и распределяет свободные моносахариды в жировую ткань и депо.

Глюкагон – гормон поджелудочной железы, который вырабатывается во время низкого уровня глюкозы в крови. Вместе с инсулином включает анаболизм гликогена.

Адреналин выделяется надпочечниками. Его синтез управляется нервной системой в стрессовых ситуациях. Адреналин запускает реакцию «бей или беги», что является сигналом для начала катаболизма гликогена.

Одновременный распад и синтез невозможен. Это приведет лишь к бесполезной трате энергии. Выработанный в процессе анаболизма гликоген тут же распадется под действием катаболизма.

Катаболизм глюкозы

Важнейший процесс расщепления глюкозы посредством воздействия ферментов и образования энергии, лактата, этанола и масляной кислоты. Является основным способом получения энергии.

Катаболизм включает в себя 2 стадии:

  1. Анаэробный гликолиз не требует кислорода и выделяет мало энергии, которая используется в основном скелетными мышцами на начальном этапе интенсивной работы.
  2. Аэробный гликолиз нуждается в кислороде. Результатом этого процесса являются углекислый газ и вода – конечные продукты окисления глюкозы.

Первый этап поставляет энергию мгновенно. Это очень актуально в стрессовых ситуациях. Следующий этап занимает некоторое время, но выделяет намного больше энергии.

Нарушение переваривания и всасывания углеводов

Встречаются патологии, нарушающие адекватное переваривание углеводов в ЖКТ. Такие нарушения ведут к сдвигам в работе всех систем органов человека. Подобные нарушения могут возникать вследствие врожденных особенностей. Могут иметь как наследственный, так и приобретенный характер.

За качественное переваривание компонентов пищи отвечают ферменты, поэтому нарушения в работе лактазы, а-амилазы и других представителей ферментной группы вызывают нарушения физического развития.

Приобретение нарушений в процессе пищеварения возникают при заболеваниях органов желудочно-кишечного тракта – колитах, гастритах, энтеритах и после операций.

Врожденной патологией является дефицит лактазы. Недостаточное количество фермента делает невозможным переваривание молочных продуктов. У больного наблюдается диарея, спазмы, метеоризм и рвота при употреблении продукции, содержащей молоко.

Нарушение метаболизма углеводов и связанные с ним заболевания

­Расстройства углеводного обмена объединяют в несколько групп.

Хроническое снижение уровня сахара в крови ниже пороговых значений называется гипогликемией. Зачастую это заболевание связано с недостаточным потреблением углеводов. Также к гипогликемии склонны люди, страдающие от алкоголизма.

Диабет принято различать на 1 и 2 тип. За последние 18 лет в России выявлено 2,5 млн пациентов с этим диагнозом. На данный момент мире 454 млн страдают от инсулинорезистентности.

Заболевание напрямую связано с гормоном надпочечников – инсулином, который играет ключевую роль в транспортировке молекул глюкозы из крови к органам.

Диабет 1 типа чаще встречается у детей и провоцируется вирусными инфекциями. Уровень инсулина никогда не бывает повышенным, наблюдается абсолютный дефицит гормона. Больные нуждаются в лечении инсулином: обычно он вводится внутривенно.

Сахарный диабет 2 типа не так опасен и вызван зачастую образом жизни человека. Нарушается эффективность или выработка инсулина – относительный дефицит гормона. Встречается в 90-95% среди всех больных диабетом.

Таким образом, причинами нарушений метаболизма углеводов можно считать как наследственные дефекты, так и сбои в функционировании печени и поджелудочной железы. Причинами могут стать опухоли, неправильное питание и стресс.

Инсулиновая и глюкагоновая реакция

В ответ на переваривание углеводов в ЖКТ организм запускает 2 реакции. После любого приема пищи, зачастую даже не содержащего много углеводов, надпочечниками вырабатывается инсулин. Его задача: регулировать концентрацию глюкозы и вязкость крови.

В первую очередь, сахариды направляются в печень и скелетные мышцы для пополнения депо. Если депо заполнено, то энергия конвертируется в жировую ткань. Относится инсулин к анаболическим гормонам.

Глюкагон решает, нужно ли печени задействовать внутренние резервы. Он тоже вырабатывается поджелудочной железой и является пептидным гормоном.

Если инсулин запасает энергию, то глюкагон активирует расщепление жиров, резервов в печени и конвертирование жирных кислот в кетоны, которые также являются энергией.

Действие глюкагона подобно адреналину: высвобождается глюкоза для быстрой реакции организма, увеличивается частота и сила сердцебиения, а также повышается артериальное давление.

Лечение нарушений углеводного обмена

В зависимости от типа расстройства, применяют соответствующий метод лечения:

  • Медикаментозное – препараты, снижающие концентрацию глюкозы в крови.
  • Инсулинотерапия – препараты, содержащие инсулин.
  • Коррекция питания – включает в себя разработку индивидуального плана в зависимости от типа нарушений и особенностей организма; зачастую базируется на уменьшении калорий и увеличении клетчатки. Используется дробное питание. В редких случаях, наоборот, интервальное голодание.
  • Физические нагрузки – тренировки и упражнения разной интенсивности.

Современная медицина способна замещать недостаток ферментов искусственно. Это таблетки и вещества, вводящиеся орально и внутривенно. Минус такого лечения – стоимость. Для лечения недостатка ферментов часто используется диета.
Как улучшить процесс пищеварения

Правильное питание способствует эффективному пищеварению и улучшению общего самочувствия.

Человек может улучшить пищеварение, соблюдая рекомендации диетологов: