Обкладочные клетки слизистой оболочки желудка секретируют трипсиноген

Главные клетки слизистой оболочки желудка секретируют
Эпителий желез желудка представляет собой высокоспециализированную ткань, состоящую из нескольких клеточных дифферонов, камбием для которых служат малодифференцированные эпителиоциты в области шеек желез. Эти клетки интенсивно метятся при введении Н-тимидина, часто делятся митозом, составляя камбий как для поверхностного эпителия слизистой оболочки желудка, так и для эпителия желудочных желез. Соответственно этому дифференцировка и смещение вновь возникающих клеток идут в двух направлениях: в сторону поверхностного эпителия и в глубину желез. Обновление клеток в эпителии желудка происходит за 1-3 суток.
Значительно медленнее обновляются высокоспециализированные клетки эпителия желудочных желез.
Главные экзокриноциты вырабатывают профермент пепсиноген, который в кислой среде превращается в активную форму пепсин — главный компонент желудочного сока. Экзокриноциты имеют призматическую форму, хорошо развитую гранулярную эндоплазматическую сеть, базофильную цитоплазму с секреторными гранулами зимогена.
Париетальные экзокриноциты — крупные, округлой или неправильно угловатой формы клетки, расположенные в составе стенки железы кнаружи от главных экзокриноцитов и мукоцитов. Цитоплазма клеток резко оксифильна. В ней содержатся многочисленные митохондрии. Ядро лежит в центральной части клетки. В цитоплазме есть система внутриклеточных секреторных канальцев, переходящих в межклеточные канальцы. В просвет внутриклеточных канальцев выступают многочисленные микроворсинки. По секреторным канальцам из клетки на апикальную ее поверхность выводятся ионы Н и Сl, образующие соляную кислоту.
Париетальные клетки секретируют также внутренний фактор Кастла, необходимый для всасывания витамина Bi2 в тонкой кишке.
Мукоциты — слизистые клетки призматической формы со светлой цитоплазмой и уплотненным ядром, смещенным в базальную часть. При электронной микроскопии в апикальной части слизистых клеток выявляется большое количество секреторных гранул. Располагаются мукоциты в главной части желез, преимущественно в теле собственных желез. Функция клеток — выработка слизи.
Эндокриноциты желудка представлены несколькими клеточными дифферонами, для названия которых приняты буквенные сокращенные обозначения (ЕС, ECL, G, P, D, А и др.). Для всех этих клеток характерна более светлая цитоплазма, чем у других эпителиальных клеток. Отличительным признаком эндокринных клеток является наличие в цитоплазме секреторных гранул. Поскольку гранулы способны восстанавливать нитрат серебра, эти клетки называют аргирофильными. Они интенсивно окрашиваются также бихроматом калия, с чем связано другое название эндокриноцитов — энтерохромаффинные.
На основании строения секреторных гранул, а также с учетом их биохимических и функциональных свойств эндокриноциты классифицируются на несколько видов.
ЕС-клетки самые многочисленные, располагаются в теле и дне железы, между главными экзокриноцитами и секретируют серотонин и мелатонин. Серотонин стимулирует секреторную деятельность главных экзокриноцитов и мукоцитов. Мелатонин участвует в регуляции биологических ритмов функциональной активности секреторных клеток в зависимости от световых циклов.
ECL-клетки вырабатывают гистамин, который действует на париетальные экзокриноциты, регулируя продукцию соляной кислоты.
G-клетки называют гастринпродуцирующими. В большом количестве они встречаются в пилорических железах желудка. Гастрин стимулирует деятельность главных и париетальных экзокриноцитов, что сопровождается усиленной выработкой пепсиногена и соляной кислоты. У людей с повышенной кислотностью желудочного сока отмечается увеличение количества G-клеток и их гиперфункция. Имеются данные о том, что G-клетки вырабатывают энкефалин — морфиноподобное вещество, впервые обнаруженное в мозгу и участвующее в регуляции чувства боли.
Р-клетки секретируют бомбезин, который усиливает сокращения гладкой мышечной ткани желчного пузыря, стимулирует выделение соляной кислоты париетальными экзокриноцитами.
D-клетки вырабатывают соматостатин — ингибитор гормона роста. Он угнетает синтез белков.
ВИП-клетки продуцируют вазоинтестинальный пептид, расширяющий кровеносные сосуды и снижающий артериальное давление. Этот пептид стимулирует также выделение гормонов клетками островков поджелудочной железы.
А-клетки синтезируют энтероглюкагон, расщепляющий гликоген до глюкозы подобно глюкагону А-клеток островков поджелудочной железы.
В большинстве эндокриноцитов секреторные гранулы находятся в базальной части. Содержимое гранул выделяется в собственную пластинку слизистой оболочки и далее попадает в кровеносные капилляры.
Мышечная пластинка слизистой оболочки образована тремя слоями гладких миоцитов.
Подслизистая основа стенки желудка представлена рыхлой волокнистой соединительной тканью с сосудистыми и нервными сплетениями.
Мышечная оболочка желудка состоит из трех слоев гладкой мышечной ткани: наружного продольного, среднего циркулярного и внутреннего с косым направлением мышечных пучков. Средний слой в области привратника утолщен и образует пилорический сфинктер. Серозная оболочка желудка образована поверхностно лежащим мезотелием, а ее основу составляет рыхлая волокнистая соединительная ткань.
В стенке желудка расположены подслизистое, межмышечное и подсерозное нервные сплетения. В ганглиях межмышечного сплетения преобладают вегетативные нейроны 1-го типа, в пилорической области желудка больше нейронов П-го типа. К сплетениям идут проводники от блуждающего нерва и из пограничного симпатического ствола. Возбуждение блуждающего нерва стимулирует секрецию желудочного сока, тогда как возбуждение симпатических нервов, наоборот, угнетает желудочную секрецию.
Источник
Париетальная (обкладочная) клетка
Париетальная клетка (лат. cellula parietalis) — клетка желудка, секретирующая соляную кислоту и внутренний фактор Кастла. Называется также обкладочной клеткой или гландулоцитом париетальным. Париетальные клетки располагаются в наружной части главных (также называемых фундальными) желёз желудка, составляющих основную часть желёз слизистой оболочки области дна, тела и интермедиальной зоны желудка. Ни одна другая клетка человеческого организма никогда не соприкасается с такой сильной кислотой (рН около 1).
На рисунке справа изображена обкладочная клетка (взято из статьи О.Д. Лопиной):
- 1 – канальцы
- 2 – микроворсины
- 3 – митохондрии
- 4 – ядро
Число обкладочных клеток (миллионов штук): у мужчин — от 960 до 1 260, в среднем — 1 090; у женщин — от 690 до 910, в среднем — 820.
Строение обкладочной клетки поляризовано: ее противоположные мембраны резко отличаются. Секреция HCl обкладочными клетками происходит на их апикальной мембране, она основана на трансмембранном переносе ионов водорода (протонов) и выполняется протонной помпой — Н + /К + -АТФазой. После активизации молекулы протонных помп встраиваются в мембрану секреторных канальцев обкладочной клетки и переносят ионы водорода из клетки в просвет железы, обменивая их на ионы калия из внеклеточного пространства. Ионный перенос происходит за счет энергии АТФ (34% объема обкладочной клетки занято синтезирующими АТФ митохондриями). Этот процесс предваряет выход из цитозоля обкладочной клетки ионов хлора Cl – . Таким образом в просвете секреторного канальца обкладочной клетки образуется соляная кислота. Благодаря функционированию протонной помпы создается существенный концентрационный градиент ионов водорода и устанавливается значительная разница рН между цитозолем обкладочной клетки (рН 7,4) и просветом секреторного канальца (рН около 1). На базолатеральной мембране располагается ряд рецепторов и для стимулирующих, и для ингибирующих лигандов, регулирующих секреторную активность. Обкладочная клетка тесно связана с энтерохромаффиноподобными клетками, G-клетками, продуцирующими гастрин и D-клетками, продуцирующими соматостатин. Протонную помпы активизирует стимуляция её рейепторов: гастрином G–рецепторов, ацетилхолином М3–рецепторов, гистамином Н2–рецепторов. Рецепторы для соматостатина, простагландинов, эпидермального фактора роста участвуют в обратном процессе — торможении секреции HCl, в том числе стимулированной гистамином (Т.Л. Лапина).
Функциональная схема обкладочной (париетальной) клетки (Дубинская Т.К. и др.)
А) фаза покоя: 1 — секреторные канальцы; 2 — тубуловезикулы
Б) фаза секреции соляной кислоты, образование ионообменных транспортных систем: 1 — секреторные канальцы; 2 — ионные каналы; 3 — протонная помпа
Секреторная активность обкладочной клетки обеспечивается тремя основными эффекторными системами, способными к синергизму:
- гистамин активирует Н2–рецепторы, связанные с аденилатциклазой
- гастрин действует через G–рецепторы, связанные с фосфолипазой С, расщепляющей фосфатидилинозитол
- ацетилхолин, медиатор парасимпатического отдела вегетативной нервной системы, также действует через активацию инозитольного цикла
Каждый из основных трех стимуляторов (гистамин, гастрин и ацетилхолин) способен к самостоятельному эффекту. Ацетилихолин и гастрин усиливают действие гистамина. Этот эффект, скорее всего, связан с влиянием обоих медиаторов на поступление кальция. Антихолинергические агенты снижают эффекты гастрина и гистамина. Блокаторы Н2–рецепторов тормозят действие гастрина и ацетилхолина. Таким образом, максимальная секреторная активность обкладочной клетки возможна лишь при нормальном функционировании всех стимулирующих рецепторов (Бельмер С.В. и др.).
На рисунке справа (А.В. Яковенко) схематически показаны механизмы регуляции секреции соляной кислоты в желудке. Голубым изображена обкладочная (париетальная) клетка, G — гастриновый рецептор, Н2 — гистаминовый рецептор, М3 — ацетилхолиновый рецептор.
Механизмы снижения кислотности желудка
Так как кислота является важнейшим фактором образования язв, эрозий, развития гастритов, то при лечении таких (кислотозависимых) заболеваний важно добиться уменьшения кислотности в органах желудочно-кишечного тракта. Этого можно добиться с помощью операции ваготомии, заключающейся в рассечении вагусного нерва или его ветвей, стимулирующих секрецию кислоты в желудке, однако чаще всего для этого используют различные фармакологические средства. За исключением антацидов, химически нейтрализующих уже секретированную кислоту, остальные препараты действуют на уровне обкладочных (париетальных ) клеток, тормозя тем или иным способом процесс секреции. На рисунке ниже схемотически изображена париетальная клетка, механизм её регуляции и места приложения действия различных блокаторов секреции и антацидов:
Регуляция секреции соляной кислоты и место приложения действия блокаторов секреции и антацидов (Калинин А.В.). Обозначения: M1R и M2R — рецепторы ацетилхолина, GR — рецепторы гастрина, Н2R — рецепторы гистамина, PP — протонная помпа, ВСС — антагонист кальция (блокатор Ca 2+ -рецепторов)
Источник
Источник
Эпителий желез желудка. Клетки желудка. Гормоны желудка.
Эпителий желез желудка представляет собой высокоспециализированную ткань, состоящую из нескольких клеточных дифферонов, камбием для которых служат малодифференцированные эпителиоциты в области шеек желез. Эти клетки интенсивно метятся при введении Н-тимидина, часто делятся митозом, составляя камбий как для поверхностного эпителия слизистой оболочки желудка, так и для эпителия желудочных желез. Соответственно этому дифференцировка и смещение вновь возникающих клеток идут в двух направлениях: в сторону поверхностного эпителия и в глубину желез. Обновление клеток в эпителии желудка происходит за 1-3 суток.
Значительно медленнее обновляются высокоспециализированные клетки эпителия желудочных желез.
Главные экзокриноциты вырабатывают профермент пепсиноген, который в кислой среде превращается в активную форму пепсин — главный компонент желудочного сока. Экзокриноциты имеют призматическую форму, хорошо развитую гранулярную эндоплазматическую сеть, базофильную цитоплазму с секреторными гранулами зимогена.
Париетальные экзокриноциты — крупные, округлой или неправильно угловатой формы клетки, расположенные в составе стенки железы кнаружи от главных экзокриноцитов и мукоцитов. Цитоплазма клеток резко оксифильна. В ней содержатся многочисленные митохондрии. Ядро лежит в центральной части клетки. В цитоплазме есть система внутриклеточных секреторных канальцев, переходящих в межклеточные канальцы. В просвет внутриклеточных канальцев выступают многочисленные микроворсинки. По секреторным канальцам из клетки на апикальную ее поверхность выводятся ионы Н и Сl, образующие соляную кислоту.
Париетальные клетки секретируют также внутренний фактор Кастла, необходимый для всасывания витамина Bi2 в тонкой кишке.
Мукоциты — слизистые клетки призматической формы со светлой цитоплазмой и уплотненным ядром, смещенным в базальную часть. При электронной микроскопии в апикальной части слизистых клеток выявляется большое количество секреторных гранул. Располагаются мукоциты в главной части желез, преимущественно в теле собственных желез. Функция клеток — выработка слизи.
Эндокриноциты желудка представлены несколькими клеточными дифферонами, для названия которых приняты буквенные сокращенные обозначения (ЕС, ECL, G, P, D, А и др.). Для всех этих клеток характерна более светлая цитоплазма, чем у других эпителиальных клеток. Отличительным признаком эндокринных клеток является наличие в цитоплазме секреторных гранул. Поскольку гранулы способны восстанавливать нитрат серебра, эти клетки называют аргирофильными. Они интенсивно окрашиваются также бихроматом калия, с чем связано другое название эндокриноцитов — энтерохромаффинные.
На основании строения секреторных гранул, а также с учетом их биохимических и функциональных свойств эндокриноциты классифицируются на несколько видов.
ЕС-клетки самые многочисленные, располагаются в теле и дне железы, между главными экзокриноцитами и секретируют серотонин и мелатонин. Серотонин стимулирует секреторную деятельность главных экзокриноцитов и мукоцитов. Мелатонин участвует в регуляции биологических ритмов функциональной активности секреторных клеток в зависимости от световых циклов.
ECL-клетки вырабатывают гистамин, который действует на париетальные экзокриноциты, регулируя продукцию соляной кислоты.
G-клетки называют гастринпродуцирующими. В большом количестве они встречаются в пилорических железах желудка. Гастрин стимулирует деятельность главных и париетальных экзокриноцитов, что сопровождается усиленной выработкой пепсиногена и соляной кислоты. У людей с повышенной кислотностью желудочного сока отмечается увеличение количества G-клеток и их гиперфункция. Имеются данные о том, что G-клетки вырабатывают энкефалин — морфиноподобное вещество, впервые обнаруженное в мозгу и участвующее в регуляции чувства боли.
Р-клетки секретируют бомбезин, который усиливает сокращения гладкой мышечной ткани желчного пузыря, стимулирует выделение соляной кислоты париетальными экзокриноцитами.
D-клетки вырабатывают соматостатин — ингибитор гормона роста. Он угнетает синтез белков.
ВИП-клетки продуцируют вазоинтестинальный пептид, расширяющий кровеносные сосуды и снижающий артериальное давление. Этот пептид стимулирует также выделение гормонов клетками островков поджелудочной железы.
А-клетки синтезируют энтероглюкагон, расщепляющий гликоген до глюкозы подобно глюкагону А-клеток островков поджелудочной железы.
В большинстве эндокриноцитов секреторные гранулы находятся в базальной части. Содержимое гранул выделяется в собственную пластинку слизистой оболочки и далее попадает в кровеносные капилляры.
Мышечная пластинка слизистой оболочки образована тремя слоями гладких миоцитов.
Подслизистая основа стенки желудка представлена рыхлой волокнистой соединительной тканью с сосудистыми и нервными сплетениями.
Мышечная оболочка желудка состоит из трех слоев гладкой мышечной ткани: наружного продольного, среднего циркулярного и внутреннего с косым направлением мышечных пучков. Средний слой в области привратника утолщен и образует пилорический сфинктер. Серозная оболочка желудка образована поверхностно лежащим мезотелием, а ее основу составляет рыхлая волокнистая соединительная ткань.
В стенке желудка расположены подслизистое, межмышечное и подсерозное нервные сплетения. В ганглиях межмышечного сплетения преобладают вегетативные нейроны 1-го типа, в пилорической области желудка больше нейронов П-го типа. К сплетениям идут проводники от блуждающего нерва и из пограничного симпатического ствола. Возбуждение блуждающего нерва стимулирует секрецию желудочного сока, тогда как возбуждение симпатических нервов, наоборот, угнетает желудочную секрецию.
– Также рекомендуем “Тонкая кишка. Развитие тонкой кишки. Строение тонкой кишки.”
Оглавление темы “Строение желудка. Строение кишечника.”:
1. Пищевод. Слизистая пищевода. Строение стенки пищевода.
2. Желудок. Развитие желудка. Строение желудка. Железы желудка.
3. Эпителий желез желудка. Клетки желудка. Гормоны желудка.
4. Тонкая кишка. Развитие тонкой кишки. Строение тонкой кишки.
5. Эпителий тонкой кишки. Клетки тонкой кишки.
6. Толстая кишка. Развитие и строение толстой кишки. Червеобразный отросток.
7. Прямая кишка. Строение прямой кишки. Поджелудочная железа.
8. Эндокринная часть поджелудочной железы. Регенерация поджелудочной железы.
9. Печень. Развитие печени. Строение печени.
10. Гепатоциты. Строение гепатоцитов. Образование желчи.
Источник
Слизистая оболочка желудка имеет толщину от 1,5 до 2,5 мм, она покрыта слоем специальных железистых клеток, которые выделяют слизеподобный секрет. В более глубоких слоях слизистой оболочки расположены железы, состоящие из главных и обкладочных клеток. Эти железы вырабатывают желудочный сок, содержащий ферменты и соляную кислоту.
В слизистой желудка образуются биологически активные вещества (гормон гастрин, олигопептиды), действующие воздуждающе на нейроны продолговатого мозга, что усиливает активность желудочных желез.
Пепсин. Пепсин (греч.pepsis – пищеварение) – протеиназа, входящая в состав желудочного сока вырабатывается обкладочными клетками слизистой оболочки желудка. Молекула пепсина представляет одну полипептидную цепь, содержащую 327 аминокислотных остатков. Пепсин получают в виде белковых кристаллов. Молекулярная масса пепсина – 34644. Кристаллический пепсин обладает высокой каталитической активностью, 1 г пепсина за 2 часа створаживает 100000 л молока, или растворяет 50000 г сваренного яичного белка. Активатором пепсина являются ионы водорода (HCl) и пепсин. Профермент пепсина – пепсиноген
Пепсиноген Н+, пепсин Пепсин
Пепсин гидролизует не только белки, но и полипептидазы, олигопептидазы, дипептидазы (в основном субстрат – белок). Пепсин гидролизует пептидные связи, образованные аминными группами ароматических аминокислот. Оптимум рН для пепсина – 1,5-2,5.
Для определения активности пепсина используется метод Пятницкого – экспресс-метод. В основе метода лежит способность пепсина створаживать белок молока – казеиноген. Створаживание молочно-ацетатной смеси пепсином при рН = 4,9 и температуре 250С происходит пропорционально его способности переваривать белок. За единицу активности пепсина принимают количество пепсина (мг), которое при рН = 4,9-5 и температуре 250С створаживает 5 см3 молочно-ацетатной смеси (данная единица соответствует 0,010 мг кристаллического пепсина. Желудочный сок в норме содержит в 1 см3 40-60 единиц пепсина, то есть в 1 см3 желудочного сока должно быть 0,4-0,6 мг пепсина.
Гастриксин. Гастриксин является гидролазой, протеиназой. Гастриксин (греч.gastros – желудок) – фермент, входящий в состав желудочного сока. Вырабатывается слизистой желудка. Оптимум рН = 3,5-4. Профермент – гасриксиноген. Активатором гастриксина являются ионы Н+ (HCl). Субстрат – белки, продукты гидролиза – полипептиды.
Парапепсин.Парапепсин – фермент, входящий в состав желудочного сока. Вырабатывается обкладочными клетками слизистой оболочки желудка. Активируется ионами Н+ (HCl). Субстратом для парапепсина является – белок гемоглобин, продуктами гидролиза – полипептиды. Парапепсин относится к гидролазам.
Желатиназа. Желатиназа – гидролаза, присутствующая в желудочном соке. Гидролизует полипептид желатин.
Химозин. Химозин (греч.chymos – сок) – протеиназа, вырабатываемая слизистой желудка. Другие названия фермента – реннин, сычужный фермент, лабфермент. Характерен для детского организма. Активатором являются ионы Н+, зимогеном – химозиноген, субстратом – белки молока. Получают из сычуга. В сычуге (четвертом отделе желудка) теленка содержится сычужный фермент, створаживающий молоко. Сычуг применяют в качестве створаживающего средства при изготовлении сыров. Сычужный фермент превращает белок молока казеиноген в сгусток казеината кальция. Очищенный сычужный фермент получают в виде кристаллов, он обладает высокой каталитической активностью: одна часть фермента при рН = 6,2 и температуре 370С свертывает 4550000 частей молока.
Ферменты кишечника
Кишечный сок – пищеварительный сок, выделяемый либеркюновыми железами слизистой оболочки кишечника. За сутки выделяется 2 л кишечного сока.
Кишечный сок – бесцветная мутноватая жидкость, имеет рН > 7. В состав сока входят следующие протеолитические ферменты: карбоксипептидаза, аминопептидаза, дипептидаза.
Кишечный сок содержит энтероксидазу, которая является активатором всех протеолитических ферментов панкреатического сока. Активация трипсина происходит в двенадцатиперстной кишке. Активированный трипсин в свою очередь является активатором всех протеолитических ферментов в полости двенадцатиперстной кишки.
Панкреатический (поджелудочный) сок – пищеварительный сок поджелудочной железы, поступающий по протокам в кишечник. За сутки вырабатывается 0,8 л панкреатического сока, который поступает в двенадцатиперстную кишку.
Секреция поджелудочного сока начинается через 2-3 минуты после приема пищи и продолжается 6-14 часов. Длительное поджелудочное сокоотделение происходит при приеме жирной пищи. Панкреатический сок является бесцветной прозрачной жидкостью, имеет рН = 7,8-8,7. Протеолитическими ферментами панкреатического сока являются трипсин, химотрипсин.
Трипсин. Трипсин (греч.thrypsis – разжижение) – протеиназа, которая входит в состав панкреатического сока, выделяемого поджелудочной железой. Панкреатический сок поступает по протокам в тонкий кишечник. Молекулярная масса трипсина 24000. Изоэлектрическая точка соответствует рН = 10, оптимум рН = 8-9 (физиологический диапазон рН тонкого кишечника – 7,8-8,2).
Трипсин гидролизует преимущественно пептидные связи, в которых участвует карбоксильная группа лизина или аргинина. Зимогеном трипсина является трипсиноген. В 1899 г. Шеповальников, сотрудник лаборатории академика И.П.Павлова установил, что в пищеварительном соке трипсин присутствует в виде профермента трипсиногена. Активаторами являются трипсин и энтерокиназа. В процессе активации из одной молекулы трипсина отщепляется одна молекула гексапептида.
Химотрипсин. Химотрипсин (греч.chymos – сок thrypsis – разжижение) – пищеварительный протеолитический фермент. Химотрипсин входит в состав панкреатического сока, который вырабатывается поджелудочной железой и по протокам поступает в тонкий кишечник. Проферментом химотрипсина является химотрипсиноген, активатором – энтерокиназа и трипсин. Химотрипсин относится к классу гидролаз, является протеиназой. Оптимум рН = 7,8-8,2. Субстрат – полипептиды, продукты гидролиза – олигопептиды. Химотрипсин расщепляет пептидные связи между ароматическими аминокислотами, а также те связи, которые не были гидролизованы трипсином. Для активного центра химотрипсина характерно наличие остатков таких аминокислот, как серин, гистидин, аспаргиновая кислота.
Карбоксипептидаза. Карбоксипептидаза (карбоксиполипептидаза) – пищеварительная гидролаза, вырабатывается поджелудочной железой, входит в состав панкреатического сока. Субстратом для карбоксидазы являются олигопептиды, содержащие С-концевые аминокислоты. С-концевыми аминокислотами называются концевые аминокислоты, содержащие свободную группу –СООН. Карбоксипептидазы отщепляют С-концевые аминокислоты.
Схема действия:
COOH
|
Х – СО – NH – C – H
|
R
Карбоксипептидазы имеют шифр 3.4.12. Карбопептидаза А (3.4.12.2) является металлоферментом. Молекулярная масса ее – 35000, содержится в кишечнике, получена в виде кристаллов, содержит 1 моль Zn2+ на 1 моль белка, используется для определения белка.
Аминопептидаза. Аминопептидаза – пищеварительный гидролитический фермент, вырабатываемый слизистой кишечника, входит в состав кишечного сока. Катализирует отщепление N-концевых аминокислот. N-концевые аминокислоты – аминокислоты, находящиеся на конце полипептидной цепи и содержащие свободную аминогруппу.
Аминопептидазы имеют шифр 3.4.11. Первая цифра шифра обозначает класс гидролаз, вторая – подкласс пептидгидролаз, третья – группу аминопептидаз.
Схема действия:
R R¢
| |
H2N – CH – C NH – CH – C …
||
O
В природе широко распространена лейцинаминопептидаза (3.4.11.1). Данный фермент содержит Zn, гидролизует соединения лейцина, пептиды, амиды, содержащие N-концевые аминокислоты.
Источник