Лечение рака желудка моноклональными антителами

История иммунотерапии рака прошла долгий путь: от первых «чудесных» исцелений до первых вакцин. За последнее время в терапии рака уже появилось множество препаратов этого направления, и ученые предрекают, что их станет еще больше. Во второй части обзора «МедНовостей» – моноклональные антитела.
История иммунотерапии рака прошла долгий путь: от первых «чудесных» исцелений до первых вакцин. За последнее время в терапии рака уже появилось множество препаратов этого направления, и ученые предрекают, что их станет еще больше.
Иммунотерапия рака – лечение опухолей с помощью антител – одно из самых перспективных направлений в терапии рака, сложившееся несколько десятков лет назад. Но первые опыты задействования иммунитета в борьбе с раком гораздо старше. «МедНовости» проследили историю иммунотерапии от Средневековья до разработки современных препаратов.
МедНовости
Все молекулы организма находятся под надзором иммунной системы. Вещества, которых в здоровом организме быть не должно, обычно вызывают иммунный ответ и по возможности уничтожаются. Иммунный ответ выражается в массовой продукции специальных белков – антител, связывающихся с такими веществами – антигенами. Среди самых известных антигенов части бактерий и вирусов, пыльца, чужеродные молекулы при пересадке трансплантатов и опухолевые антигены, экспрессируемые только раковыми клетками.
К сожалению, иммунная система не всегда способна распознать или уничтожить опухоль. Клетки новообразований к тому же имеют целый список способов маскировки. Кроме того, опухоль не однородна, а гетерогенна, то есть состоит из клеток с разным фенотипом, что еще более затрудняет задачу как для лекарств, так и для систем внутренней защиты организма. Иммунотерапия же помечает раковые клетки и делает их видимыми для иммунных клеток, напрямую убивает переродившиеся клетки либо в целом укрепляет иммунную систему. Некоторые лекарства даже могут предотвратить появления заболевания, заранее научив организм бороться с определенным типом рака.
Получение моноклональных антител в лаборатории. Фото: Wiki
I. Виды иммунотерапии рака
В понятие «иммунотерапия» входят три основные группы препаратов.
1. Противораковые вакцины вызывают иммунный ответ против конкретной опухоли либо работают превентивно.
2. Неспецифическая иммунотерапия в целом усиливает иммунную систему и помогает ей бороться с болезнью.
3. И, наконец, моноклональные антитела (мАт или mAbs) – варианты белков иммунной системы, созданные учеными в лабораториях. Называются они так, потому что их вырабатывают клетки-клоны, полученные от одной-единственной клетки-предшественницы. За последние пару десятилетий FDA США одобрило более десятка мАт.
II. Моноклональные антитела для терапии рака
Моноклональные антитела различаются не только по своей целевой мишени, но и по способу борьбы с раковыми клетками. Их разделают на две большие группы: конъюгированные и неконъюгированные. Первые действуют сами, вторые таргетно (прицельно) доносят до раковых клеток то, что на них «навесили» ученые, – например, лекарство.
Первые моноклональные тела, используемые учеными, были мышиными. Но, поскольку они были чужими для человеческого организма, их введение само могло спровоцировать иммунный ответ. В связи в этим ученые начали заменять те участки животных мАт-белков, которые не связываются с целевым антигеном, на человеческие. Первые подобные разработки получили название «химерных» антител – по аналогии с древнегреческим чудовищем Химерой. Дальнейшие усилия были направлены на сокращение количества мышиных участков антител и, соответственно, увеличение количества человеческих. Следующее поколение препаратов, созданных в результате этого, – гуманизированные мАт, на которые иммунная система реагирует уже слабо. Наконец, сейчас есть и полностью человеческие антитела.
Неконъюгированные моноклональные антитела
Неконъюгированные моноклональные антитела используются чаще всего. В большинстве случаев они прикрепляются к определенному антигену на раковых клетках и «помечают» их для иммунной системы. Например, алемтузумаб (Campath) используется для лечения некоторых пациентов с хроническим лимфолейкозом. Препарат связывается с CD52 на лимфоцитах и привлекает клетки иммунной системы.
Для лечения В-клеточной лимфомы изобрели ритуксимаб (Rituxan). Он нацелен на белок CD20, которые экспрессируется только В-клетками крови. После воздействия препарата снижается общее количество В-клеток: и опухолевых, и здоровых. Организм производит новые здоровые клетки взамен разрушенных, поэтому абсолютное и относительное количество раковых клеток оказывается сниженным.
Другая группа мАт блокирует рецепторы факторов роста. Факторы роста – это сигнальные молекулы нормальных и перерожденных клеток, провоцирующие деление. Гиперэкспрессия их рецепторов или амплификация соответствующего гена позволяет раковым клеткам делиться в разы быстрее, чем здоровым. Цетуксимаб (Эрбитукс), одобренный для лечения рака толстой кишки и рака головы и шеи, нацелен на рецептор эпидермального фактора роста (EGFR) раковых клеток. Трастузумаб (Herceptin) широко используется при HER2+ раке молочной железы и желудка. Эти мАт блокируют ферментационную активность HER2 – рецептора эпидермального фактора роста человека 2 (human epidermal growth factor receptor).
Моноклональные антитела атакуют раковые клетки. Фото: Shuterstock
Еще один механизм действия – ингибирование ангиогенеза – прорастания новых сосудов. Чтобы получать больше питания и кислорода, опухоли выделяют различные факторы, которые вызывают образование новых сосудов в «шаговой доступности» от новообразования. Моноклональные тела, нацеленные на факторы роста сосудов, могут блокировать сигналы от раковых клеток либо разрушить уже имеющуюся сосудистую сетку.
В качестве примера можно привести рамуцирумаб (Cyramza), одобренный FDA в 2014 году в качестве второй линии лечения при распространенном раке желудка. Препарат блокирует рецептор фактора роста эндотелия сосудов-2 (VEGF2) на клетках кровеносных сосудов.
Конъюгированные моноклональные антитела
Конъюгированные моноклональные антитела – это мАт, объединенные с радиоактивными частицами или препаратами химиотерапии. Используя такую сложную конструкцию, врачи могут направить лекарство или излучение напрямую на раковые клетки и одновременно снизить повреждение здоровых тканей. К примеру, препарат ибритумомаб (Зевалин) одобрен для неходжкинской лимфомы. Моноклональное тело помечено иттрием-90 и связывается с CD20 B-клеток. Адо-трастузумаб эмтансин (Kadcyla) одобрен для лечения HER2+ рака молочной железы. После связывания с рецептором клетка захватывает мАт, которое после этого высвобождает химиотерапевтические молекулы.
Еще один тип – это биспецифические мАт. Они состоят из частей двух различных моноклональных антител и, следственно, связываются сразу с двумя антигенами. Например, блинатумомаб (Blincyto) используют для лечения некоторых типов острого лимфобластного лейкоза. Одна часть препарата связывается с CD19 некоторых клеток лейкемии и лимфомы, а другая – с CD3 на Т-клетках иммунной системы. Таким образом, когда мАт связался сразу по обоим сайтам, Т-клетка оказывается сведенной нос к носу с раковой клеткой и может ее атаковать.
III. Новые разработки
Ученые сейчас создает и испытывают новые формы мАт: более специфичные, к новым антигенам, конъюгированные с новыми частицами или молекулами, с меньшим количеством побочных эффектов.
Например, в 2013 году создано новое мАт ESK1, нацеленное на онкогенный белок WT1, который находится не на поверхности, а внутри клетки. WT1 гиперэкспрессируется при лейкозах, миеломе, раках молочной железы, яичников, толстой и прямой кишок. Препарат находится на доклинических исследованиях для лечения лейкемии.
Исследователи из Университета Калифорнии (University of California) в том же году заявили о гуманизированном мАт, непосредственно убивающем клетки хронического лимфолейкоза. Клетки этого типа опухолей экспрессируют на поверхности высокий уровень CD44, на которую и нацелен препарат. Как говорят ученые, влияние на нормальные В-клетки мало.
Конъюгация мАт с селеном повышает эффективность лечения у пациентов с резистентностью к химиотерапии, как показал Техасский технологический университет (Texas Tech University) в 2014 году.
Некоторые пациенты не отвечают на лечение мАт, или у них развивается устойчивость к такой терапии. Но ученые борются и с этим. Исследователи из Университета Саутгемптона (University of Southampton) и шведской биотехнологической компании BioInvent в этом году показали один из механизмов такой резистентности: некоторые раковые клетки могут поглотить мАт и таким способом избежать столкновения с иммунной системой. Новое антитело BI-1206 не дает этого сделать, а эффективность препарата повышается зачет связывания с рецептором FcγRIIB. Перспективность разработки уже показана на доклинических моделях и ожидается проверка лекарства в клинических испытаниях.
Не обошло лечение мАт и братьев наших меньших. Существуют данные, что почти у каждой второй собаки старше 10 лет развивается рак. Поэтому ученые из Вены в прошлом году впервые применили антитела для лечения онкологий у собак.
Источник
Моноклональные антитела – это новейшее достижение медицины, которое применяется при лечении тяжелых заболеваний. Среди них злокачественные новообразования, аутоиммунные, системные, заболевания сердечно-сосудистой системы, некоторые инфекции и многое другое. Помимо этого, моноклональные антитела широко используются в диагностике, например, в иммуногистохимии, иммуноферментном анализе, проточной цитофлуориметрии и др. Таким образом, данная технология используется во многих отраслях современной медицины.
Человечество уже давно открыло для себя действие антител – особых молекул, которые вырабатываются клетками иммунной системы для распознавания чужеродных агентов – антигенов и их уничтожения. Антитела обладают специфичностью. Это значит, что они узнают только свой антиген, причем не просто антиген, а отдельный его фрагмент – детерминантную группу. В одном антигене может быть несколько таких детерминантных групп, и к ним будут образовываться разные антитела. Более того, к одной детерминанте может образовываться сразу несколько видов антител, которые могут отличаться по структуре, степени родства и прочности связывания. Таким образом, при введении антигена в организм образуется большое количество разных видов антител, направленных исключительно на один вид антигена. Это позволяет обеспечить адекватную иммунную защиту.
Антитела образуются специальными антителообразующими клетками. Причем каждый их вид образуется отдельной группой генетически однородных клеток – клонов. Чем больше необходимо видов антител, тем больше образуется клонов. Соответственно, антитела, которые вырабатываются одним клоном клеток называются моноклональными антителами.
Раньше для производства антител применялась иммунизация животных, после которой отбиралась их плазма и использовалась для приготовления отдельных препаратов – иммунных сывороток для борьбы с различными токсинами (дифтерия, столбняк), вирусами, ядами и др. Но бывают ситуации, когда нужно конкретное антитело, направленное на конкретную детерминанту антигена. Здесь уже обычной иммунизацией не обойтись. Требуются более прицельные технологии.
Способы получения моноклональных антител
Получение моноклональных антител – это сложный многоступенчатый процесс, который проходит следующие этапы:
- Иммунизация животных. Обычно используются мыши или крысы. Это нужно для того чтобы увеличить количество лимфобластов – клеток, продуцирующих нужные антитела и перевести эти клетки в активное состояние. После выделения из организма эти клетки не могут долго существовать в лабораторных условиях, они погибнут даже на питательных средах с содержанием ростовых факторов. Чтобы это предотвратить, их скрещивают со злокачественными миеломными клетками.
- Подготовка миеломных клеток. Параллельно с иммунизацией животных проводят подготовку опухолевых миеломных клеток. Они, во-первых, обладают способностью синтезировать моноклональные антитела, а во-вторых, обладают неограниченным жизненным потенциалом (они бессмертны и способны к бесконечному воспроизведению). Для того чтобы миеломные клетки не погибли вне организма, их культивируют на специальных средах с использованием факторов роста.
- Гибридизация (слияние) лимфобластов и миеломных клеток для образования гибридомы. Для этого клетки обрабатывают различными антителами, чтобы изменить строение их мембран и спровоцировать образование цитоплазматических контактов. При этом образуются разные типы клеток, имеющих двойной набор хромосом (дикарионы). Это могут быть дикарионы, образованные только лимфоцитами, или только миеломными клетками. Но для производства моноклональных антител нужны именно дикарионы, образованные лимфоцитом и миеломной клеткой – гибридные клетки.
- Отбор гибридных клеток. Для этого используют специальные растворы, которые позволяют выжить только лимфобластным и гибридомным дикарионам. Первые в скором времени погибают, т. к. не обладают возможностью безграничного деления, а гибридомные клетки остаются жизнеспособными.
- Реклонирование гибридомных клонов.
- Определение и отбор гибридом, продуцирующих моноклональные антитела. Обычно для этого используется иммуноферментный анализ.
- Массовое наращивание антител.
- Очистка полученных антител. Степень очистки будет определяться областью применения препарата. Если это диагностика, достаточно 70-95% степени чистоты. Если препарат предполагается использовать для иммунотерапии, требуется более высокая степень чистоты. Для очистки используется аффинная и ионообменная хроматография.
- Удаление оставшихся примесей и обеззараживание полученного препарата от вирусов и бактерий.
В настоящее время идет тенденция отказа в использовании антител животных для лечебных целей. Во-первых, они являются чужеродными агентами для организма и могут спровоцировать аллергические реакции, вплоть до анафилаксии, что напрямую угрожает жизни пациентов. Во-вторых, иммунная система человека, распознавая такие антитела как чужеродные, будет пытаться их инактивировать, что снизит эффективность противоопухолевого лечения. Получить человеческие моноклональные антитела вышеописанным методом не представляется возможным, ввиду следующих проблем:
- Иммунизация человека различными антигенами неэтична.
- Даже если получить иммунизированные лимфоциты человека, будут проблемы на этапе их слияния с клетками миеломы мыши – полученные гибридомы будут нестабильны.
- Клеточные линии миеломы человека, которые можно было бы эффективно использовать в рамках биотехнологий для получения антител, пока получить не удалось.
В этой связи необходимо было искать новые технологии получения антител. Решением проблемы стали гибридные, гуманизированные и одноцепочечные антитела, производство которых подразумевало применение гибридомной технологии, кратко описанной выше, и технологии рекомбинантной ДНК.
- Гибридное или химерное антитело – это антитело, в котором его константный домен заменен на иммуноглобулин человека. Получаются они посредством технологии рекомбинантной ДНК, когда удаляется фрагмент мышиной ДНК, отвечающей за синтез константного домена и меняют его на фрагмент человеческой ДНК. Таким образом, в антителе в качестве константного домена, который обладает иммуногенными и эффекторными свойствами, будет человеческий белок, что позволит организму воспринимать его «за своего», а вариабельный домен, который специфически взаимодействует с антигеном, останется мышиным. Все вместе это позволит сохранить специфичность и уменьшить аллергенность и иммуногенность применяемого препарата.
- Гуманизированное антитело содержит еще меньше мышиного белка за счет только антигенсвязывающих гипервариабельных участков вариабельного домена. Это еще больше снижает вероятность осложнений со стороны иммунной системы.
- Одноцепочечное антитело представляет собой минимальный фрагмент антитела, который еще в состоянии хорошо связаться с антигеном и оказать свое действие. Он не содержит константного домена вообще.
Механизм действия моноклоналных антител
Моноклональные антитела широко используются в лечении заболеваний, у которых в патогенезе замешан иммунный компонент. С их помощью лечат псориаз, аутоиммунные заболевания, ревматоидный артрит, рассеянный склероз. Большие перспективы эти технологии получили и в онкологии в рамках таргетной терапии. При этом, их эффект основан на различных механизмах, которые рассмотрены ниже.
Изменение клеточных сигналов
В качестве примера изменения клеточных сигналов можно привести рецепторы факторов роста. Некоторые злокачественные клетки имеют на своей поверхности большое количество рецепторов к факторам роста, активирующим каскад реакций, направленный на усиление размножения клетки. Чем больше таких рецепторов, тем активнее протекает этот процесс. Если блокировать рецептор с помощью моноклонального антитела, он не сможет связаться с лигандом (фактором роста), и соответственно каскад этих реакций не будет запущен. Клетка не будет так активно размножаться и в конце концов погибнет.
Комплемент-зависимая цитотоксичность
Этот механизм реализуется следующим образом. Антитело связывается с антигеном, находящимся на поверхности злокачественной клетки, что приводит к активации многоэтапной системы комплемента (механизма иммунного ответа). Конечным этапом этих реакций является образование особого белка С 9, который перфорирует клеточную мембрану раковой клетки, что в конечном итоге приводит к ее гибели.
Усиление цитотоксического воздействия иммунных клеток
Моноклональные антитела могут стимулировать иммунные клетки, например, макрофаги. Они будут распознавать клетки злокачественных опухолей и «пожирать» их, тем самым уничтожая их.
Развитие адаптивного иммунитета
Одной из причин, по которой становится возможным образование и развитие злокачественной опухоли в организме, является то, что иммунная система человека не распознает такие клетки как чужеродные. Моноклональные антитела дают возможность иммунитету «познакомиться» с раком и делает его доступным для связывания и последующего уничтожения. Таким образом, организм получает возможность самостоятельно бороться с опухолью.
Препараты с моноклональными антителами
Препараты на основе моноклональных антител уже два десятилетия входят в протоколы противоопухолевого лечения некоторых злокачественных новообразований. В 2008 году ВОЗ были приняты рекомендации относительно непатентованных названий таких препаратов:
- Их название должно заканчиваться на маб, от английского monoclonal antibody.
- Для указания источника получения моноклонального антитела должны использоваться следующие подосновы:
- -аксо – гибридное антитело.
- -о – мышиное антитело.
- -кси – химерное антитело.
- -у – человеческое антитело.
В настоящее время используется два вида противоопухолевых моноклональных антител:
- Неконъюгированные антитела – они оказывают непосредственное действие на процессы, которые приводят к гибели злокачественной клетки.
- Конъюгированные антитела – они связаны (конъюгированы) с токсинами или изотопами. Токсины и изотопы обладают уничтожающим действием на злокачественные клетки, а антитело обеспечивает их прицельную доставку к клеткам-мишеням.
Применение неконъюгированных антител
Эти препараты используются чаще всего. Их целью является определенный рецептор на поверхности злокачественной клетки.
К этому типу препаратов относится ритуксимаб – первое моноклональное антитело, которое было одобрено для применения в клинической практике. Его используют для лечения CD20+ В-клеточных лимфом. Рецептор CD20 есть на В-лимфоцитах, как здоровых, так и опухолевых, но он отсутствует на других тканях и клетках, в том числе на стволовых. Поэтому при воздействии ритуксимаба хоть и погибает популяция В-лимфоцитов, но потом она восстанавливается за счет нетронутых стволовых клеток. Причем восстанавливаются именно здоровые клетки.
Неконъюгированные антитела могут помечать злокачественные клетки и делать их видимыми для иммунной системы. Таким способом работает алемтузумаб, который связывается с CD52+ лимфоцитами и привлекает к ним внимание иммунитета.
Также к неконъюгированным моноклональным антителам относятся ингибиторы рецепторов факторов роста. Факторы роста – это специальные молекулы, которые запускают деление клетки. Для того чтобы запустить этот процесс, фактор должен связаться со специальным рецептором, расположенным на мембране клетки, что приведет к каскаду соответствующих реакций. Такие рецепторы есть и у здоровых клеток, и у злокачественных, но у злокачественных их может быть очень много, что позволяет таким клеткам делиться быстрее. Блокирование рецепторов с помощью антител приводит к нарушению этого процесса деления и клетки уже не могут бесконтрольно размножаться. К таким препаратам относится трастузумаб, цетуксимаб и др.
К неконъюгированным антителам относятся и ингибиторы ангиогенеза – образования кровеносных сосудов. Ангиогенез очень важен для злокачественных опухолей, чтобы получать большее количество кислорода и питательных элементов, поэтому опухоли инциируют его образование с помощью специальных химических сигналов. Моноклональные антитела либо блокируют передачу этих сигналов, либо разрушают уже созданную внутри опухоли сосудистую сеть. Это приводит к нарушению ее питания и остановке роста. К группе этих препаратов относится рамуцирумаб, бевацизумаб и др.
Применение конъюгированных антител
Конъюгированные моноклональные антитела связывают с цитотоксическими или радиотоксическими веществами, что позволяет прицельно воздействовать разрушающим агентом на злокачественные клетки. В качестве примера такого препарата можно привести ибритумомаб (Зевалин), в котором моноклональное антитело против CD20 (как мы помним, это маркер В-лимфоцитов) соединено с радиоактивным изотопом – иттрием-90. Препарат применяется для лечения В-клеточных лимфом. В качестве другого препарата можно привести Кадсилу – препарат, в котором антитело трастузумаб конъюгировано с ингибитором микротрубочек DM1, оказывающим цитотоксический эффект. Применяют его для лечения рака молочной железы.
Проблемы при использовании моноклональных антител
Несмотря на, казалось бы, огромные перспективы в лечении онкологических больных, применение моноклональных антител не является панацеей и тоже имеет ряд проблем:
- Препараты на основе моноклональных антител биологически и биохимически нестабильны. Особенно это касается конъюгированных антител. Это требует особых условий производства, хранения и транспортировки.
- Антитела плохо проникают внутрь опухоли.
- Они могут вызывать иммунный ответ против себя, что блокирует их действие. У 75% пациентов, которым вводились мышиные антитела, наблюдалось образование нейтрализующих антител, что снижало эффективность лечения.
- Препараты на основе моноклональных антител оказывают токсическое действие. Конечно, оно не такое выраженное как у цитостатиков, но в ряде случаев токсичность настолько высокая, что требует отмены препарата.
- Наиболее важным моментом является высокая специфичность моноклональных антител и высокая гетерогенность опухолевых клеток. Не все раковые клетки имеют молекулы мишени, на которые направлено действие препарата. Соответственно, они ускользают от его действия и остаются нетронутыми. Постепенно масса этих клеток накапливается и опухоль становится резистентной к данному методу лечения.
Чтобы улучшить результаты лечения, разрабатываются новые виды моноклональных антител. Одним из вариантов являются биспецифические антитела, которые направлены сразу на две молекулярные мишени, например, блинатумомаб – препарат, направленный сразу на две клеточные мишени В-лимфоцита – CD 19 и CD22. Он повышает узнаваемость злокачественных клеток даже после их трансформации в другие виды лейкоза.
В любом случае моноклональные антитела – это новое и высокоперспективное направление в современной онкологии. Разработка современных, более совершенных технологий помогает решать имеющиеся проблемы и делает лечение пациентов эффективнее и безопаснее.
Источник