Как желудок переваривает белок

Переваривание белков. Этапы и последовательность переваривания белковПищевые белки химически представляют собой длинные цепи аминокислот, соединенных друг с другом пептидными связями. Переваривание белков в желудке. Пепсин — важный фермент желудка, расщепляющий белки. Он наиболее активен при рН 2,0-3,0 и не активен при рН выше 5,0. Вследствие этого для проявления расщепляющего действия белка ферментом желудочный сок должен быть кислым. Как объяснено в главе 64, железы желудка секретируют большое количество соляной кислоты. Эта кислота секретируется париетальными (кислотопродуцирующими) клетками желез при рН, равным приблизительно 0,8. К моменту, когда кислота смешивается с желудочным содержимым и секретом из некислотопродуцирующих железистых клеток желудка, рН уже составляет в среднем 2,0-3,0, что чрезвычайно благоприятно для активности пепсина. Одной из важных переваривающих особенностей пепсина является его способность переваривать белок коллаген — альбуминоподобный тип белка, который лишь незначительно расщепляется под действием других пищеварительных ферментов. Коллаген — главная составляющая часть межклеточной соединительной ткани мяса; поэтому для расщепления белков мяса ферментами пищеварительного тракта прежде всего необходимо переварить коллагеновые нити. В связи с этим у индивида, у которого отмечается недостаток пепсина в желудочном соке, съеденное мясо хуже подвергается обработке другими пищеварительными ферментами и, следовательно, может хуже перевариваться. Пепсин только начинает процесс переваривания белка, обычно обеспечивая только 10-20% полного переваривания белков и превращение их в альбумозы, пептоны и мелкие полипептиды. Это расщепление белков происходит в результате гидролиза пептидной связи между аминокислотами. Переваривание белков секретами поджелудочной железы. Переваривание белка преимущественно происходит в верхних отделах тонкого кишечника, в двенадцатиперстной кишке и тощей кишке под воздействием протеолитических ферментов, секретируемых поджелудочной железой. Частично расщепленные продукты белковой пищи, поступая в тонкий кишечник из желудка, подвергаются воздействию главных протеолитических панкреатических ферментов: трипсина, хемотрипсина, карбоксиполипептидазы и проэластазы. Трипсин и хемотрипсин расщепляют молекулы белка на небольшие полипептиды; карбоксиполипептидаза отщепляет отдельные аминокислоты от карбоксильного конца полипептидов. Проэластаза, в свою очередь, превращается в эластазу, которая затем переваривает эластические волокна, частично содержащиеся в мясных продуктах. Под действием панкреатического сока небольшой процент белков переваривается до аминокислот. Большинство белков расщепляется до дипептидов и трипептидов. Переваривание белков пептидазами энтероцитов, встроенных в ворсинки тонкого кишечника. Заключительный этап переваривания белков в просвете кишечника обеспечивается энтероцитами тонкого кишечника, которые покрыты ворсинками, преимущественно в двенадцатиперстной кишке и тощей кишке. Эти клетки имеют щеточную каемку, которая состоит из сотен микроворсинок, выступающих над поверхностью клетки. В мембране каждой из этих микроворсинок содержатся многочисленные пептидазы, которые выступают над мембраной, где они взаимодействуют с кишечной жидкостью. Наиболее важны два типа пептидаз: аминополипептидаза и некоторые дипептидазы. Они доводят расщепление оставшихся крупных полипептидов до дипептидов, трипептидов и меньшего числа аминокислот. И аминокислоты, и дйпептиды с трипептидами свободно транспортируются сквозь мембрану микроворсинок во внутреннюю часть энтероцита. Наконец, внутри цитозоля энтероцитов находятся другие многочисленные пептидазы, которые специфичны для оставшихся связей между аминокислотами. В течение нескольких минут практически все оставшиеся дипептиды и трипептиды перевариваются до конечной стадии в форме отдельных аминокислот; далее они выходят через другую сторону энтероцита, а отсюда — в кровь. Более 99% конечных продуктов переваривания белков, которые всасываются, являются одиночными аминокислотами. Очень редко происходит всасывание пептидов и чрезвычайно редко всасывается целая молекула белка. Даже крайне малое число всосавшихся молекул цельного белка может иногда вызывать серьезные аллергические или иммунологические нарушения. – Также рекомендуем “Переваривание жиров. Этапы переваривания жиров в кишечнике” Оглавление темы “Пищеварительные соки. Переваривание углеводов, белков, жиров”: |
Источник
Любой живой организм питается органической пищей, которая разрушается в пищеварительной системе и участвует в клеточном метаболизме. И для такого вещества, как белок, переваривание означает полное расщепление до составляющих его мономеров. Это значит, что основной задачей пищеварительной системы является разрушение вторичной, третичной или доменной структуры молекулы, а затем отщепление аминокислот. Позже мономеры белков будут разнесены кровеносной системой по клеткам организма, где будут синтезированы новые белковые молекулы, необходимые для жизнедеятельности.
Ферментативное расщепление белка
Белок — сложная макромолекула, пример биополимера, состоящего из множества аминокислот. А некоторые белковые молекулы состоят не только из аминокислотных остатков, но и из углеводных или липидных структур. Ферментативные или транспортные белки и вовсе могут содержать ион металла. Чаще прочих в пище присутствуют белковые молекулы, которые содержатся в мясе животного. Это также сложные фибриллярные молекулы с длинной аминокислотной цепочкой.
Для расщепления белков в пищеварительной системе имеется набор ферментов протеолиза. Это пепсин, трипсин, хемотрипсин, эластаза, гастриксин, химозин. Окончательное переваривание белков происходит в тонком кишечнике под действием пептид-гидролаз и дипептидаз. Это группа ферментов, которые разрушают пептидную связь у строго специфичных аминокислот. Это значит, что для разрушения пептидной связи между остатками аминокислоты серина нужен один фермент, а для расщепления связи, образованной треонином, — другой.
Ферменты переваривания белков делятся на виды в зависимости от строения их активного центра. Это сериновые, треониновые, аспартильные, глютаминовые и цистеиновые протеазы. В структуре своего активного центра они содержат определенную аминокислоту, из-за которой получили свое название.
Что происходит с белком в желудке?
Многие ошибаются, говоря, что желудок является главным органом пищеварения. Это распространенное заблуждение, так как переваривание пищи частично наблюдается уже в ротовой полости, где разрушается небольшая часть углеводов. Здесь же происходит их частичное всасывание. Но основные процессы пищеварения и вовсе протекают в тонком кишечнике. При этом, несмотря на наличие пепсина, химозина, гастриксина и соляной кислоты, переваривания белков в желудке не происходит. Эти вещества под действием протеолитического фермента пепсина и соляной кислоты денатурируют, то есть теряют свою особую пространственную структуру. Также под действием химозина створаживается белок молока.
Если выразить процесс переваривания белка в процентах, то в желудке происходит примерно 10 % разрушения каждой белковой молекулы. Это значит, что в желудке ни одна аминокислота от макромолекулы не отрывается и не всасывается в кровь. Белок лишь набухает и денатурирует, чтобы увеличить количество доступных мест для работы протеолитических ферментов в двенадцатиперстной кишке. Это значит, что под действием пепсина молекула белка увеличивается в объеме, обнажая больше пептидных связей, на которые затем присоединяются протеолитические ферменты панкреатического сока.
Переваривание белка в двенадцатиперстной кишке
После желудка обработанная и тщательно измельченная пища, смешанная с желудочным соком и подготовленная к дальнейшим этапам пищеварения, попадает в двенадцатиперстную кишку. Это участок пищеварительного тракта, расположенный в самом начале тонкого кишечника. Здесь происходит дальнейшее расщепление молекул под действием панкреатических ферментов. Это более агрессивные и более активные вещества, способные дробить длинную полипептидную цепочку.
Под действием трипсина, эластазы, химотрипсина, карбоксипептидаз А и В происходит расщепление молекулы белка на множество более мелких цепей. По сути, после прохождения двенадцатиперстной кишки переваривание белков в кишечнике только начинается. И если выразить в процентах, то после обработки пищевого комка панкреатическим соком белки перевариваются примерно на 30-35 %. Полная их «разборка» до составляющих мономеров будет проведена в тонком кишечнике.
Итоги панкреатического пищеварения белков
Переваривание белков в желудке и двенадцатиперстной кишке — это подготовительный этап, который нужен для дробления макромолекул. Если в желудок поступает белок с длиной цепочки в 1000 аминокислот, то на выходе из двенадцатиперстной кишки получится, к примеру, 100 молекул с 10 аминокислотами в каждой. Это гипотетическая цифра, так как эндопептидазы, указанные выше, не делят молекулу на равные участки. В образовавшейся массе будут присутствовать молекулы с длиной цепочки и 20 аминокислот, и 10, и 5. Это значит, что процесс дробления является хаотичным. Его цель — максимальное упрощение работы экзопептидаз в тонком кишечнике.
Пищеварение в тонком кишечнике
Для любого высокомолекулярного белка переваривание — это полное его разрушение до составляющих первичную структуру мономеров. И в тонком кишечнике под действием экзопептидаз достигается разложение олигопептидов на отдельные аминокислоты. Олигопептидами называются упомянутые выше остатки крупной белковой молекулы, состоящие из небольшого количества аминокислот. Их расщепление сопоставимо по энергетическим затратам с синтезом. Потому переваривание белков и углеводов — это энергоемкий процесс, как и само всасывание полученных аминокислот эпителиальными клетками.
Пристеночное пищеварение
Пищеварение в тонком кишечнике называется пристеночным, так как оно протекает на ворсинках — складках кишечного эпителия, где сконцентрированы ферменты экзопептидазы. Они присоединяются к молекуле олигопептида и гидролизуют пептидную связь. При этом для каждого типа аминокислоты существует свой фермент. То есть на разрыв связи, образованной аланином, нужен фермент аланин-аминопептидаза, глицина — глицин-аминопептидаза, лейцина — лейцин-аминопетидаза.
Из-за этого белковое переваривание занимает много времени и требует большого количества пищеварительных ферментов разных типов. За их синтез отвечает поджелудочная железа. Ее функция страдает у пациентов, злоупотребляющих алкоголем. Но нормализовать недостаток ферментов, принимая фармакологические препараты, практически невозможно.
Источник
При создании данной страницы использовались труды О. А. Тимина (лекции), а также Т. Т. Березова «Биологическая химия»
Редактор: Вадим Антонюк
Навигация:
1) Биологическая роль и структура белков.
2) Переваривание белков в желудке: ферменты, система их активации, оптимум рН, специфичность, продукты переваривания.
3) Роль соляной кислоты в пищеварении.
4) Переваривание белков в кишечнике: ферменты панкреатического и кишечного соков, система их активации, специфичность действия, продукты гидролиза белков.
5) Гниение белков в кишечнике: понятие, химизм образования продуктов гниения и детоксикация ядовитых продуктов в печени.
6) Пути всасывания аминокислот в кишечнике.
7) Тканевой распад белков. Роль шаперонов и убиквитина в этом процессе.
8) Понятие клеточного метаболического пула аминокислот.
Биологическая роль и структура белков.
Белки – это высокомолекулярные азотсодержащие органические вещества, молекулы которых построены из остатков аминокислот.
Все природные белки состоят из небольшого числа
сравнительно простых структурных блоков, представленных мономерными молекулами
– аминокислотами, связанными друг с другом в полипептидные цепи.
Функции белков:
1) Структурная:
- в соединительной ткани – коллаген, эластин, кератин
- построение мембран и формирование цитоскелета (интегральные, полуинтегральные и поверхностные белки) – спектрин (поверхностный, основной белок цитоскелета эритроцитов), гликофорин (интегральный, фиксирует спектрин на поверхности)
- построение органелл – рибосомы
2) Ферментативная:
Все ферменты являются белками
3) Гормональная:
Регуляция и согласование обмена
веществ в разных клетках организма – многие гормо-ны, например, инсулин и
глюкагон.
4) Рецепторная:
Избирательное связывание гормонов,
биологически активных веществ и медиаторов на поверхности мембран или внутри
клеток.
5) Транспортная:
Перенос веществ в крови – липопротеины (перенос жира), гемоглобин (транспорт кислорода), трансферрин (транспорт железа) или через мембраны – Na+,К+-АТФаза (противоположный трансмембранный перенос ионов натрия и калия), Са2+-АТФаза (выкачивание ионов кальция из клетки).
6) Резервная: производство и
накопление в яйце яичного альбумина.
7) Питательная: белки грудного
молока, белки мышц и печени при голодании.
8) Защитная: наличие в крови иммуноглобулинов, белков свертывания крови.
Переваривание белков в желудке: ферменты, система их активации, оптимум pH, специфичность, продукты переваривания.
В желудке пища подвергается воздействию желудочного сока, включающего соляную кислоту и ферменты. К ферментам желудка относятся две группы протеаз с разным оптимумом рН, которые упрощенно называют пепсин и гастриксин. У грудных детей основным ферментом является реннин.
Регуляция желудочного пищеварения:
Осуществляется нервными (условные и
безусловные рефлексы) и гуморальными механизмами.
К гуморальным регуляторам желудочной секреции относятся гастрин и гистамин. Гастрин выделяется специфичными G-клетками:
- в ответ на раздражение механорецепторов,
- в ответ на раздражение хеморецепторов (продукты первичного гидролиза белков),
- под влиянием n.vagus.
Гастрин стимулирует главные, обкладочные и добавочные клетки, что вызывает секрецию желудочного сока, в большей мере соляной кислоты. Также гастрин обеспечивает секрецию гистамина.
Гистамин, образующийся в
энтерохромаффиноподобных клетках (ECL-клетки, принадлежат фундальным железам)
слизистой оболочки желудка, взаимодействует с Н2-рецепторами на
обкладочных клетках желудка, увеличивает в них синтез и выделение соляной
кислоты.
Закисление желудочного содержимого подавляет активность G-клеток и по механизму обратной отрицательной связи снижает секрецию гастрина и желудочного сока.
Пепсин
Пепсин – эндопептидаза, то есть расщепляет внутренние пептидные связи в
молекулах белков и пептидов.
Синтезируется в главных клетках желудка в виде неактивного профермента пепсиногена, в котором активный центр»прикрыт» N-концевым фрагментом. При наличии соляной кислоты конформация пепсиногена изменяется таким образом, что «раскрывается» активный центр фермента, который отщепляет остаточный пептид (N-концевой фрагмент), блокирующий работу фермента, т.е. происходит аутокатализ. В результате образуется активный пепсин, активирующий и другие молекулы пепсиногена.
Оптимум рН для пепсина 1,5-2,0.
Пепсин, не обладая высокой специфичностью, гидролизует пептидные связи, образованные аминогруппами ароматических аминокислот (тирозина, фенилаланина, триптофана), аминогруппами и карбоксигруппами лейцина, глутаминовой кислоты и т.д.
Гастриксин
Его оптимум рН соответствует 3,2-3,5. Наибольшее значение этот фермент имеет при питании молочно-растительной пищей, слабо стимулирующей выделение соляной кислоты и одновременно нейтрализующей ее в просвете желудка. Гастриксин является эндопептидазой и гидролизует связи, образованные карбоксильными группами дикарбоновых аминокислот.
Роль соляной кислоты в пищеварении
Одним из компонентов желудочного сока является соляная кислота. В образовании соляной кислоты принимают участие париетальные (обкладочные) клетки желудка, образующие ионы Н+ и переносящие ионы Сl– из крови в полость желудка.
Функции соляной кислоты:
- денатурация белков пищи,
- бактерицидное действие,
- высвобождение железа из комплекса с белками и перевод его в двухвалентную форму, что необходимо для его всасывания,
- превращение неактивного пепсиногена в активный пепсин,
- снижение рН желудочного содержимого до 1,5-2,5 и создание оптимума рН для работы пепсина,
- стимуляция секреции кишечного гормона секретина.
реклама
Переваривание белков в кишечнике: ферменты панкреатического и кишечного соков, система их активации, специфичность действия, продукты гидролиза белков.
Двенадцатиперстная кишка и тонкий кишечник в целом
Покинув
желудок, пища подвергается действию панкреатического сока, кишечного сока и
желчи.
Сок поджелудочной железы содержит проферменты–трипсиноген, химотрипсиноген, прокарбоксипептидазы, проэластазу. Проферменты в просвете кишечника активируются до трипсина, химотрипсина, карбоксипептидаз и эластазы соответственно. Указанные ферменты осуществляют основную работу по перевариванию белков.
В кишечном соке активны дипептидазы и аминопептидазы. Они заканчивают переваривание белков.
Регуляция кишечного пищеварения
В тонком кишечнике под влиянием низкого рН начинается секреция гормона секретина, который с током крови достигает поджелудочной железы и стимулирует выделение жидкой части панкреатического сока, богатого карбонат-ионами (HCO3–).
Также благодаря работе желудочных ферментов в химусе имеется некоторое количество аминокислот, вызывающих освобождение холецистокинина — панкреозимина. Он стимулирует секрецию другой, богатой проферментами, части поджелудочного сока, и секрецию желчи. В образовании желчи одновременно принимает участие секретин, стимулирующий продукцию бикарбонатов эпителием желчных протоков.
В целом нейтрализация кислого химуса в двенадцатиперстной кишке происходит при участии панкреатического сока и желчи. В результате его рН повышается до 7,0-7,5.
Трипсин
Выделяемый в pancreas трипсиноген в двенадцатиперстной кишке подвергается частичному протеолизу под действием фермента энтеропептидазы, секретируемой клетками кишечного эпителия. От профермента отделяется гексапептид (Вал-Асп-Асп-Асп-Асп-Лиз), что приводит к формированию активного центра трипсина.
Трипсин специфичен к
пептидным связям, образованным с участием карбоксильных групп лизина и аргинина.
Трипсин может осуществлять аутокатализ, т.е. превращение последующих молекул трипсиногена в трипсин, также он активирует остальные протеолитические ферменты панкреатического сока – химотрипсиноген, проэластазу, прокарбоксипептидазу. Также трипсин участвует в переваривании пищевых липидов, активируя фермент переваривания фосфолипидов – фосфолипазу А2, и колипазу фермента липазы, отвечающей за гидролиз три-ацилглицеролов.
Химотрипсин
Образуется из химотрипсиногена при участии трипсина и промежуточных, уже активных, форм химотрипсина, которые выстригают два дипептида из цепи профермента. Три образованных фрагмента удерживаются друг с другом посредством дисульфидных связей.
Фермент специфичен к пептидным связям, образованным с участием карбоксильных групп фенилаланина, тирозина и триптофана
Эластаза
Активируется в просвете кишечника трипсином из
проэластазы.
Гидролизует связи, образованные карбоксильными группами малых аминокислот аланина, пролина, глицина.
Карбоксипептидазы
Карбоксипептидазы являются экзопептидазами, т.е. гидролизуют пептидные связи с С-конца пептидной цепи. Различают два типа карбоксипептидаз – карбоксипептидазы А и карбоксипептидазы В. Карбоксипептидазы А отщепляют с С-конца остатки алифатических и ароматических аминокислот, карбоксипептидазы В – остатки лизина и аргинина.
Аминопептидазы
Являясь экзопептидазами, аминопептидазы отщепляют N-концевые аминокислоты. Важными представителями являются аланинаминопептидаза и лейцинаминопептидаза, обладающие широкой специфичностью. Например, лейцинаминопептидаза отщепляет с N-конца белка не только лейцин, но и ароматические аминокислоты и гистидин.
Дипептидазы
Дипептидазы гидролизуют дипептиды, в изобилии образующиеся в кишечнике при работе других ферментов.
Малое количество дипептидов и пептидов пиноцитозом попадают в энтероциты и здесь гидролизуются лизосомальными протеазами.
Толстый кишечник
При богатой белками диете часть пептидов, не успевая расщепиться, достигает толстого кишечника и потребляется живущими там микроорганизмами.
Гниение белков в кишечнике: химизм, образование продуктов гниения и детоксикация ядовитых продуктов в печени
При ухудшении всасывания аминокислот, при избытке белковой пищи, при нарушении деятельности пищеварительных желез недопереваренные фрагменты белков достигают толстого кишечника, где подвергаются воздействию кишечной микрофлоры. Этот процесс получил название гниение белков в кишечнике. При этом образуются продукты разложения аминокислот, представляющие собой как токсины (кадаверин, путресцин, крезол, фенол, скатол, индол, пиперидин, пирролидин, сероводород, метилмеркаптан (СН3SН)), так и нейромедиаторы (серотонин, гистамин, октопамин, тирамин). Гниение белков также активируется при снижении перистальтики кишечника (запоры).
В печени происходит обезвреживание токсических веществ, поступающих из толстого кишечника, с помощью двух систем:
- система микросомального окисления,
- система конъюгации.
Цель и суть работы систем обезвреживания заключается в маскировке токсичных групп (например, в феноле токсична ОН-группа) и/или в придании гидрофильности молекуле, что способствует ее выведению с мочой и отсутствию накопления в нервной и жировой ткани.
Микросомальное окисление
Микросомальное окисление – это последовательность реакций с участием оксигеназ и НАДФН, приводящих к внедрению атома кислорода в состав неполярной молекулы и появлению у нее гидрофильности. Реакции осуществляются несколькими ферментами, расположенными на мембранах эндоплазматического ретикулума. Ферменты организуют короткую цепь, которая заканчивается цитохромом P450. Цитохром Р450 включает один атом кислорода в молекулу субстрата, а другой – в молекулу воды.
Субстрат окисления необязательно является чужеродным веществом (ксенобиотиком). Микросомальному окислению также подвергаются предшественники желчных кислот и стероидных гормонов и другие метаболиты.
Конъюгация
Для маскировки токсичных групп и придания большей гидрофильности молекуле существует процесс конъюгации, т.е. ее связывания с очень полярным соединением – таким соединением являются глутатион, серная, глюкуроновая, уксусная кислоты, глицин, глутамин. В клетках они часто находятся в связанном состоянии, например:
- серная кислота связана с 3′-фосфоаденозин-5′-фосфатом и образует фосфоаденозин-фосфосульфат (ФАФС),
- глюкуроновая кислота связана с уридилдифосфорной кислотой и образует уридил-дифосфоглюкуроновую кислоту (УДФГК),
- уксусная кислота находится в виде ацетил-S-KoA.
Образование животного индикана
Примером реакций обезвреживания веществ является превращение индола в животный индикан. Сначала индол окисляется с участием цитохрома Р450 до индоксила, затем конъюгирует с серной кислотой с образованием индоксилсульфата и далее калиевой соли – животного индикана.
При повышенном поступлении индола из толстого кишечника образование индикана в печени усиливается, далее он поступает в почки и выводится с мочой. По концентрации животного индикана в моче можно судить об интенсивности процессов гниения белка в кишечнике.
реклама
Пути всасывания аминокислот в кишечнике
Перенос аминокислот через мембраны клеток, как в кишечнике, так и в других тканях, осуществляется при помощи двух механизмов: вторичный активный транспорт и глутатионовая транспортная система.
Транспорт с использованием градиента концентрации натрия – вторичный активный транспорт.
В настоящее время выделяют 5 транспортных систем:
* для крупных нейтральных, в том числе алифатических и ароматических аминокислот,
* для малых нейтральных – аланина, серина, треонина,
* для основных аминокислот – аргинина и лизина, а также для кислых аминокислот – аспартата и глутамата,
* для малых аминокислот – глицина, пролина и оксипролина.
Вторичный активный транспорт основан на использовании низкой концентрации натрия внутри клеток, создаваемой Na+,K+-АТФазой. Специфический белок-транспортер связывает на апикальной поверхности энтероцитов аминокислоту и ион натрия. Используя движение натрия по градиенту концентрации, белок переносит аминокислоту в цитозоль.
Переносчиком некоторых аминокислот (обычно нейтральных) является трипептид глутатион (глутамилцистеилглицин). При взаимодействии глутатиона с амино-кислотой на внешней стороне клеточной мембраны при участии глутамилтрансферазы глутамильный остаток связывает аминокислоту и происходит ее перемещение внутрь клетки. Глутатион при этом распадается на составляющие. После отделения аминокислоты происходит ресинтез глутатиона.
Тканевой распад белков. Роль шаперонов и убиквинта в этом процессе.
Аминокислоты, образующиеся в результате переваривания белков в ЖКТ, поступают в кровь и доставляются в печень, где часть аминокислот используется для синтеза белков крови, а другая часть разносится кровью к разным тканям, органам и клеткам. Второй источник свободных аминокислот эндогенный гидролиз белков. Процесс обновления аминокислот в молекулах тканевых белков происходит с большой скоростью (белки крови — 18-45 суток). Распад тканевых белков осуществляется при участии активной системы протеолитических ферментов, объединенных под названием тканевых протеиназ или катепсинов. Но они не могут действовать в полную силу в организме животного, т.к. для этого необходима кислотная среда 4-5, а такая концентрация ионов Н, которая возникает в тканях после смерти или в очаге воспаления, что сопровождается самоперевариванием ткани. Но, тем не менее, активность протеиназ при рН 7,2-7,8 вполне обеспечивает постоянное самообновление белков.
В тканях различают протеиназы 1,2,3 и 4, которые по механизму действия близко стоят к соответствующим ферментам ЖКТ: 1-пепсин, 2-трипсин, 3-карбоксипептидаза, 4-аминопептидаза. Эти ферменты обеспечивают постоянный гидролиз белков и способствуют формированию фонда свободных аминокислот клеток, межклеточной жидкости и крови.
Шапероны
Шапероны – универсальные консервативные белки, которые связывают другие белки и стабилизируют их конформацию. Они могут исправлять недостатки белков как после их синтеза, так и в процессе синтеза на рибосомах, включатся в мультимерные комплексы или переходить через различные клеточные мембраны. Шапероны предотвращают агрегацию белка перед завершением свертывания и предотвращают образование нефункционирующих или непродуктивных конформаций во время этого процесса.
Убиквитин
В целом роль убиквитина выглядит так. Между убиквитином и белком-субстратом образуется ковалентная связь, возникающая между аминными группами остатков лизина белка и карбоксильной группой концевого остатка убиквитина. Образовавшиеся конъюгаты, которые содержат более чем одну молекулу убиквитина, могут быть деградированы протеиназами, в основном протеасомами. Узнавание белков, подлежащих протеолизу осуществляется так называемым убиктивиновым комплексом, способным взаимодействовать с отработанными или аномальными белками. АТФ расходуется как на стадии образования, так и на стадии деградации конъюгатов убиквитина с белком. Есть основания полагать, что убиквитин вызывает значительные конформационные изменения субстратного белка, что делает этот белок чувствительным к протеолизу. Связывание белка с убиквитином служит сигналом для «узнавания» этого белка протеиназами, что обеспечивает механизм избирательной деградации внутриклеточных белков.
Понятие клеточного метаболического пула аминокислот
Аминокислоты в клетке составляют динамичный пул, который непрерывно пополняется и так же непрерывно расходуется.
Существуют три источника аминокислот для пополнения этого пула:
- поступление из крови,
- распад собственных внутриклеточных белков
- синтез заменимых аминокислот.
Путь дальнейшего превращения каждой аминокислоты зависит от вида и функции клетки, условий ее существования и гормональных влияний. Спектр веществ, получаемых клеткой из аминокислот, чрезвычайно широк.
Реакции превращения
аминокислот в клетке условно можно разделить на три части, в зависимости от
реагирующей группы:
- с участием аминогруппы — здесь подразумевается удаление от аминокислоты аминогруппы тем или иным способом, в результате чего остается углеводородный скелет,
- по боковой цепи (радикалу) — происходит использование углеродного скелета для синтеза глюкозы, жиров, или для образованеия энергии АТФ,
- по карбоксильной группе — связано с отщеплением карбоксильной группы.
Источник